Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ron M. Kerkhoven is active.

Publication


Featured researches published by Ron M. Kerkhoven.


Nature | 2002

Gene expression profiling predicts clinical outcome of breast cancer.

Laura J. van 't Veer; Hongyue Dai; Marc J. van de Vijver; Yudong D. He; Augustinus A. M. Hart; Mao Mao; Hans Peterse; Karin van der Kooy; Matthew J. Marton; Anke Witteveen; George J. Schreiber; Ron M. Kerkhoven; Christopher J. Roberts; Peter S. Linsley; René Bernards; Stephen H. Friend

Breast cancer patients with the same stage of disease can have markedly different treatment responses and overall outcome. The strongest predictors for metastases (for example, lymph node status and histological grade) fail to classify accurately breast tumours according to their clinical behaviour. Chemotherapy or hormonal therapy reduces the risk of distant metastases by approximately one-third; however, 70–80% of patients receiving this treatment would have survived without it. None of the signatures of breast cancer gene expression reported to date allow for patient-tailored therapy strategies. Here we used DNA microarray analysis on primary breast tumours of 117 young patients, and applied supervised classification to identify a gene expression signature strongly predictive of a short interval to distant metastases (‘poor prognosis’ signature) in patients without tumour cells in local lymph nodes at diagnosis (lymph node negative). In addition, we established a signature that identifies tumours of BRCA1 carriers. The poor prognosis signature consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This gene expression profile will outperform all currently used clinical parameters in predicting disease outcome. Our findings provide a strategy to select patients who would benefit from adjuvant therapy.


Nature | 2004

A large-scale RNAi screen in human cells identifies new components of the p53 pathway

Katrien Berns; E. Marielle Hijmans; Jasper Mullenders; Thijn R. Brummelkamp; Arno Velds; Mike Heimerikx; Ron M. Kerkhoven; Mandy Madiredjo; Wouter Nijkamp; Britta Weigelt; Reuven Agami; Wei Ge; Guy Cavet; Peter S. Linsley; Roderick L. Beijersbergen; René Bernards

RNA interference (RNAi) is a powerful new tool with which to perform loss-of-function genetic screens in lower organisms and can greatly facilitate the identification of components of cellular signalling pathways. In mammalian cells, such screens have been hampered by a lack of suitable tools that can be used on a large scale. We and others have recently developed expression vectors to direct the synthesis of short hairpin RNAs (shRNAs) that act as short interfering RNA (siRNA)-like molecules to stably suppress gene expression. Here we report the construction of a set of retroviral vectors encoding 23,742 distinct shRNAs, which target 7,914 different human genes for suppression. We use this RNAi library in human cells to identify one known and five new modulators of p53-dependent proliferation arrest. Suppression of these genes confers resistance to both p53-dependent and p19ARF-dependent proliferation arrest, and abolishes a DNA-damage-induced G1 cell-cycle arrest. Furthermore, we describe siRNA bar-code screens to rapidly identify individual siRNA vectors associated with a specific phenotype. These new tools will greatly facilitate large-scale loss-of-function genetic screens in mammalian cells.


Cell | 2010

Systematic protein location mapping reveals five principal chromatin types in Drosophila cells

Guillaume J. Filion; Joke G. van Bemmel; Ulrich Braunschweig; Wendy Talhout; Jop Kind; Lucas D. Ward; Wim Brugman; Inês J. de Castro; Ron M. Kerkhoven; Harmen J. Bussemaker; Bas van Steensel

Chromatin is important for the regulation of transcription and other functions, yet the diversity of chromatin composition and the distribution along chromosomes are still poorly characterized. By integrative analysis of genome-wide binding maps of 53 broadly selected chromatin components in Drosophila cells, we show that the genome is segmented into five principal chromatin types that are defined by unique yet overlapping combinations of proteins and form domains that can extend over > 100 kb. We identify a repressive chromatin type that covers about half of the genome and lacks classic heterochromatin markers. Furthermore, transcriptionally active euchromatin consists of two types that differ in molecular organization and H3K36 methylation and regulate distinct classes of genes. Finally, we provide evidence that the different chromatin types help to target DNA-binding factors to specific genomic regions. These results provide a global view of chromatin diversity and domain organization in a metazoan cell.


Molecular Cell | 2010

Molecular Maps of the Reorganization of Genome-Nuclear Lamina Interactions during Differentiation

Daan Peric-Hupkes; Wouter Meuleman; Ludo Pagie; Sophia W.M. Bruggeman; Irina Solovei; Wim Brugman; Stefan Gräf; Paul Flicek; Ron M. Kerkhoven; Maarten van Lohuizen; Marcel J. T. Reinders; Lodewyk F. A. Wessels; Bas van Steensel

The three-dimensional organization of chromosomes within the nucleus and its dynamics during differentiation are largely unknown. To visualize this process in molecular detail, we generated high-resolution maps of genome-nuclear lamina interactions during subsequent differentiation of mouse embryonic stem cells via lineage-committed neural precursor cells into terminally differentiated astrocytes. This reveals that a basal chromosome architecture present in embryonic stem cells is cumulatively altered at hundreds of sites during lineage commitment and subsequent terminal differentiation. This remodeling involves both individual transcription units and multigene regions and affects many genes that determine cellular identity. Often, genes that move away from the lamina are concomitantly activated; many others, however, remain inactive yet become unlocked for activation in a next differentiation step. These results suggest that lamina-genome interactions are widely involved in the control of gene expression programs during lineage commitment and terminal differentiation.


Nature Cell Biology | 2005

FoxM1 is required for execution of the mitotic programme and chromosome stability.

Jamila Laoukili; Matthijs R. H. Kooistra; Alexandra Brás; Jos Kauw; Ron M. Kerkhoven; Ashby J. Morrison; Hans Clevers; René H. Medema

Transcriptional induction of cell-cycle regulatory proteins ensures proper timing of subsequent cell-cycle events. Here we show that the Forkhead transcription factor FoxM1 regulates expression of many G2-specific genes and is essential for chromosome stability. Loss of FoxM1 leads to pleiotropic cell-cycle defects, including a delay in G2, chromosome mis-segregation and frequent failure of cytokinesis. We show that transcriptional activation of cyclin B by FoxM1 is essential for timely mitotic entry, whereas CENP-F, another direct target of FoxM1 identified here, is essential for precise functioning of the mitotic spindle checkpoint. Thus, our data uncover a transcriptional cluster regulated by FoxM1 that is essential for proper mitotic progression.


Journal of Clinical Oncology | 2013

Tumor Exome Analysis Reveals Neoantigen-Specific T-Cell Reactivity in an Ipilimumab-Responsive Melanoma

Nienke van Rooij; Marit M. van Buuren; Daisy Philips; Arno Velds; Mireille Toebes; Bianca Heemskerk; Laura van Dijk; Sam Behjati; Henk Hilkmann; Dris El Atmioui; Marja Nieuwland; Michael R. Stratton; Ron M. Kerkhoven; Can Keşmir; John B. A. G. Haanen; Pia Kvistborg; Ton N. M. Schumacher

The evidence for T-cell–mediated regression of human cancers such as non–small-cell lung carcinoma, renal cell carcinoma, and—in particular—melanoma after immunotherapy is strong. Anti-CTLA4 (ipilimumab) treatment has been approved for treatment of meta-static melanoma,1 and antibody-mediated blockade of PD-1, a second inhibitory receptor on T cells, has shown highly encouraging results in early clinical trials.2,3 Although the clinical activity of these treatments is apparent, it is still unknown which T-cell reactivities are involved in immunotherapy-induced cancer regression.4 T-cell reactivity against nonmutated tumor-associated self-antigens has been analyzed in patients treated with ipilimumab or with autologous tumor-infiltrating T cells, but the magnitude of the T-cell responses observed has been relatively modest.5,6 In part on the basis of such data, recognition of patient-specific mutant epitopes (hereafter referred to as neoantigens) has been suggested to be a potentially important component.7 A potential involvement of mutated epitopes in T-cell control would also fit well with the observation that the mutation load in sun-exposed melanomas is particularly high.8-10 Intriguingly, on the basis of animal model data, it has recently been suggested that (therapy-induced) analysis of T-cell reactivity against patient-specific neoantigens may be feasible through exploitation of cancer genome data.11,12 However, human data have thus far been lacking. Here we report a case of a patient with stage IV melanoma who exhibited a clinical response to ipilimumab treatment. Cancer exome–guided analysis of T-cell reactivity in this patient revealed reactivity against two neoantigens, including a dominant T-cell response against a mutant epitope of the ATR (ataxia telangiectasia and Rad3 related) gene product that increased strongly after ipilimumab treatment. These data provide the first demonstration (to our knowledge) of cancer exome–guided analysis to dissect the effects of melanoma immunotherapy.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer

Xiaoling Liu; Henne Holstege; Hanneke van der Gulden; Marcelle Treur-Mulder; John Zevenhoven; Arno Velds; Ron M. Kerkhoven; Martin H. van Vliet; Lodewyk F. A. Wessels; Johannes L. Peterse; Anton Berns; Jos Jonkers

Women carrying germ-line mutations in BRCA1 are strongly predisposed to developing breast cancers with characteristic features also observed in sporadic basal-like breast cancers. They appear as high-grade tumors with high proliferation rates and pushing borders. On the molecular level, they are negative for hormone receptors and ERBB2, display frequent TP53 mutations, and express basal epithelial markers. To study the role of BRCA1 and P53 loss of function in breast cancer development, we generated conditional mouse models with tissue-specific mutation of Brca1 and/or p53 in basal epithelial cells. Somatic loss of both BRCA1 and p53 resulted in the rapid and efficient formation of highly proliferative, poorly differentiated, estrogen receptor-negative mammary carcinomas with pushing borders and increased expression of basal epithelial markers, reminiscent of human basal-like breast cancer. BRCA1- and p53-deficient mouse mammary tumors exhibit dramatic genomic instability, and their molecular signatures resemble those of human BRCA1-mutated breast cancers. Thus, these tumors display important hallmarks of hereditary breast cancers in BRCA1-mutation carriers.


Science | 2013

Deciphering the Glycosylome of Dystroglycanopathies Using Haploid Screens for Lassa Virus Entry

Lucas T. Jae; Matthijs Raaben; Moniek Riemersma; Ellen van Beusekom; Vincent A. Blomen; Arno Velds; Ron M. Kerkhoven; Jan E. Carette; Haluk Topaloglu; Peter Meinecke; Marja W. Wessels; Dirk J. Lefeber; Sean P. J. Whelan; Hans van Bokhoven; Thijn R. Brummelkamp

Viruses and Congenital Disorders Mutations in genes involved in α-dystroglycan O-linked glycosylation result in posttranslation modifications associated with the congenital disease Walker-Warburg syndrome (WWS). This cellular modification is also required for efficient Lassa virus infection of cells. Jae et al. (p. 479, published online 21 March) screened for genes involved in O-glycosylation that affected Lassa virus infection and identified candidates involved in glycosylation. Individuals from different pedigrees exhibiting WWS had unique mutations among genes identified in the genetic screen. Thus, comprehensive forward genetic screens can be used to define the genetic architecture of a complex disease. Deficiencies in the glycosylation of α-dystroglycan interfere with Lassa virus entry and link to Walker-Warburg syndrome Glycosylated α-dystroglycan (α-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate α-DG, but many genes mutated in WWS remain unknown. To identify modifiers of α-DG, we performed a haploid screen for Lassa virus entry, a hemorrhagic fever virus causing thousands of deaths annually that hijacks glycosylated α-DG to enter cells. In complementary screens, we profiled cells for absence of α-DG carbohydrate chains or biochemically related glycans. This revealed virus host factors and a suite of glycosylation units, including all known Walker-Warburg genes and five additional factors critical for the modification of α-DG. Our findings accentuate the complexity of this posttranslational feature and point out genes defective in dystroglycanopathies.


PLOS Genetics | 2011

Interactions among Polycomb Domains Are Guided by Chromosome Architecture

Bas Tolhuis; Marleen Blom; Ron M. Kerkhoven; Ludo Pagie; Hans Teunissen; Marja Nieuwland; Marieke Simonis; Wouter de Laat; Maarten van Lohuizen; Bas van Steensel

Polycomb group (PcG) proteins bind and regulate hundreds of genes. Previous evidence has suggested that long-range chromatin interactions may contribute to the regulation of PcG target genes. Here, we adapted the Chromosome Conformation Capture on Chip (4C) assay to systematically map chromosomal interactions in Drosophila melanogaster larval brain tissue. Our results demonstrate that PcG target genes interact extensively with each other in nuclear space. These interactions are highly specific for PcG target genes, because non-target genes with either low or high expression show distinct interactions. Notably, interactions are mostly limited to genes on the same chromosome arm, and we demonstrate that a topological rather than a sequence-based mechanism is responsible for this constraint. Our results demonstrate that many interactions among PcG target genes exist and that these interactions are guided by overall chromosome architecture.


Nature Cell Biology | 2010

BRD7 is a candidate tumour suppressor gene required for p53 function

Jarno Drost; Fiamma Mantovani; Tocco F; Ran Elkon; Comel A; Holstege H; Ron M. Kerkhoven; Jos Jonkers; Voorhoeve Pm; Reuven Agami; Del Sal G

Oncogene-induced senescence is a p53-dependent defence mechanism against uncontrolled proliferation. Consequently, many human tumours harbour p53 mutations and others show a dysfunctional p53 pathway, frequently by unknown mechanisms. Here we identify BRD7 (bromodomain-containing 7) as a protein whose inhibition allows full neoplastic transformation in the presence of wild-type p53. In human breast tumours harbouring wild-type, but not mutant, p53 the BRD7 gene locus was frequently deleted and low BRD7 expression was found in a subgroup of tumours. Functionally, BRD7 is required for efficient p53-mediated transcription of a subset of target genes. BRD7 interacts with p53 and p300 and is recruited to target gene promoters, affecting histone acetylation, p53 acetylation and promoter activity. Thus, BRD7 suppresses tumorigenicity by serving as a p53 cofactor required for the efficient induction of p53-dependent oncogene-induced senescence.

Collaboration


Dive into the Ron M. Kerkhoven's collaboration.

Top Co-Authors

Avatar

Arno Velds

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marja Nieuwland

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

René Bernards

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Ton N. M. Schumacher

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Wim Brugman

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Bas van Steensel

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Daoud Sie

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Mike Heimerikx

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Sabine C. Linn

Netherlands Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge