Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ron M. Sullivan is active.

Publication


Featured researches published by Ron M. Sullivan.


Psychoneuroendocrinology | 2002

Prefrontal cortical regulation of hypothalamic-pituitary-adrenal function in the rat and implications for psychopathology: side matters.

Ron M. Sullivan; Alain Gratton

In recent years, dysfunction of hypothalamic-pituitary-adrenal (HPA) axis function has been implicated in a wide variety of psychiatric conditions. The importance of this system in responding to and coping with stress is well documented, and the integrity of such systems is of obvious significance to good mental health. The prefrontal cortex (PFC) is also heavily implicated in numerous psychopathological conditions. There is thus a growing interest in the potential role the PFC might play in regulating HPA function, and whether abnormalities of these systems are linked. The present paper reviews a number of recent animal studies which have attempted to elucidate the role of the PFC in regulation of HPA axis function, and how these systems may interact. It is concluded that the PFC is involved both in activating HPA responses to stress and in the negative feedback regulation of this system. Cerebral laterality is an important feature of this regulation, with the right PFC being most directly linked to stress-regulatory systems. On this basis, a number of parallels are drawn to the human literature, where asymmetrical disturbances in PFC activity may help explain associated patterns of HPA dysfunction.


Brain Research | 2002

Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent.

Ron M. Sullivan; Alain Gratton

The ventral region of the medial prefrontal cortex (mPFC) is highly sensitive to stressful inputs and implicated in a variety of behaviors. Studies have also demonstrated numerous functional hemispheric asymmetries within this brain area of the rat. The present study examines the effects of ibotenic acid or sham lesions targeting the left, right or bilateral infralimbic cortex, on a variety of behaviors. Lesions (which destroyed infralimbic and ventral prelimbic cortex) were without effect on acquisition or reversal of a spatial learning task in the Morris water maze. Similarly unaffected were spontaneous and amphetamine-induced locomotor activity and sensitization, and prepulse inhibition of the acoustic startle response. In contrast, lesions significantly affected behavior in the elevated plus maze, as right-lesioned animals spent more time exploring the open arms of the maze than shams or left-lesioned rats, while not differing in closed arm entries. As well, in a simple taste aversion paradigm, right-lesioned rats drank significantly more of a sweetened milk/quinine solution than shams and left-lesioned rats, despite not differing in consumption of sweetened milk alone. The anxiolytic effects of right, but not left lesions of ventral mPFC, parallel the asymmetrical suppression of physiological stress responses previously reported for similar lesions. It is suggested that the right ventral mPFC plays a primary role in optimizing cautious and adaptive behavior in potentially threatening situations.


Brain Research | 1999

Neonatal ventral hippocampal lesions attenuate the nucleus accumbens dopamine response to stress: an electrochemical study in the adult rat.

Wayne G. Brake; Ron M. Sullivan; Gonzalo Flores; Lalit K. Srivastava; Alain Gratton

Neonatal damage to the ventral hippocampus (VH) can lead, during adulthood, to behaviours that are believed to reflect enhanced mesocorticolimbic dopamine (DA) transmission. In the present study, the effects of neonatal excitotoxic lesions to the VH on spontaneous locomotor activity and stress-elicited increases in extracellular nucleus accumbens (NAcc) DA levels were examined in adult rats. Male pups received, on postnatal day 7, bilateral injections of either an ibotenic acid solution (lesioned) or vehicle (sham-lesioned) into the VH. At 3-4 months of age, animals were assessed during five daily sessions for changes in spontaneous locomotor activity associated with habituation to a novel environment. Voltammetry was used in separate groups of sham- and VH-lesioned animals to monitor the NAcc DA response to each of five once-daily exposures to tail-pinch stress. The results indicate that while VH-lesioned animals seem to habituate to novelty, they remain hyperactive relative to sham-lesioned controls. In contrast, however, stress consistently elicited in VH-lesioned animals smaller and shorter-lasting increases in NAcc DA than in sham-lesioned controls. These data suggest that neonatal excitotoxic damage to VH leads to changes in DA function that persist into adulthood. The blunted response to stress seen in VH-lesioned animals indicates that one consequence of such damage is a functional hyporeactivity in meso-NAcc DA neurons. The fact that these animals are spontaneously more active suggests compensatory changes in DA function that are efferent to DA terminals in NAcc.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2009

Sex differences in corticolimbic dopamine and serotonin systems in the rat and the effect of postnatal handling

Annie Duchesne; Marc M. Dufresne; Ron M. Sullivan

Stress-related psychopathology is particularly prevalent in women, although the neurobiological reason(s) for this are unclear. Dopamine (DA) and serotonin (5-HT) systems however, are known to play important adaptive roles in stress and emotion regulation. The aims of the present study included examination of sex differences in stress-related behaviour and neuroendocrine function as well as post mortem neurochemistry, with the main hypothesis that corticolimbic DA and 5-HT systems would show greater functional activity in males than females. Long-Evans rats of both sexes were employed. Additional factors incorporated included differential postnatal experience (handled vs. nonhandled) and adult mild stress experience (acute vs. repeated (5) restraint). Regional neurochemistry measures were conducted separately for left and right hemispheres. Behaviourally, females showed more exploratory behaviour than males in the elevated plus maze and an openfield/holeboard apparatus. Females also exhibited significantly higher levels of adrenocorticotrophic hormone and corticosterone at all time points in response to restraint stress than males across treatment conditions, although both sexes showed similar habituation in stress-induced ACTH activation with repeated mild stress. Neurochemically, females had significantly higher levels of DA (in ventromedial prefrontal cortex (vmPFC), insular cortex and n. accumbens) and 5-HT (in vmPFC, amygdala, dorsal hippocampus and insula) than males. In contrast, males had higher levels of the DA metabolite DOPAC or DOPAC/DA ratios than females in all five regions and higher levels of the 5-HT metabolite 5-HIAA or 5-HIAA/5-HT ratios in vmPFC, amygdala and insula, suggesting greater neurotransmitter utilization in males. Moreover, handling treatment induced a significant male-specific upregulation of 5-HT metabolism in all regions except n. accumbens. Given the adaptive role of 5-HT and DAergic neurotransmission in stress and emotion regulation, the intrinsic sex differences we report in the functional status of these systems across conditions, may be highly relevant to the differential vulnerability to disorders of stress and emotion regulation.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2011

Cholinergic depletion in the nucleus accumbens: Effects on amphetamine response and sensorimotor gating

François Laplante; Douglas A. Lappi; Ron M. Sullivan

A delicate balance between dopaminergic and cholinergic activity in the ventral striatum or nucleus accumbens (N.Acc) appears to be important for optimal performance of a wide range of behaviours. While functional interactions between these systems are complex, some data suggest that acetylcholine in the N.Acc. may dampen the effects of excessive dopamine (DA) release. We proposed that a reduction in the density of cholinergic interneurons in the N.Acc would result in behavioural alterations suggestive of a hyper-responsiveness of the N.Acc DA system. The present study aimed to produce a sustainable depletion of cholinergic neurons in the N.Acc in the rat and study the effects of such lesions on DA-dependent behaviour. A novel saporin immunotoxin targeting choline acetyltransferase was microinjected bilaterally into the N.Acc of adult rats. We confirmed histologically that two weeks post-injection, animals show a local, selective depletion of cholinergic interneurons (mean cell loss of 44%). Cholinergic-depleted rats showed a marked increase in the locomotor activating effects of amphetamine. In addition, such lesions induced a disruption of sensorimotor gating processes, reflected in a reduction in the prepulse inhibition of the acoustic startle response, which was reversed by haloperidol. These data are suggestive of pronounced hyper-responsiveness of the meso-accumbens DA system which may be of relevance to the pathophysiology of schizophrenia, a condition where selective reduction in the number of ventral striatal cholinergic neurons has been demonstrated.


Neuroreport | 2009

Lateralized sex differences in stress-induced dopamine release in the rat.

Ron M. Sullivan; Marc M. Dufresne; Jay Waldron

This study examined the possibility that hemispheric differences in stress-induced brain activation vary as a function of sex. Using in-vivo voltammetry, increases in extracellular dopamine release in response to predator odour and tail pinch stress were recorded bilaterally and simultaneously in either the infralimbic cortex or basolateral amygdala. In both stress-sensitive brain regions, significant sex×hemisphere interactions were observed, with males and females showing greater dopamine activation in right-brain and left-brain structures, respectively. Cortical asymmetries in dopamine release also showed sex-specific correlations with stress-induced neuroendocrine activation. Given the intriguing human parallels, we suggest that differential cerebral lateralization may be highly relevant to the disproportionately high incidence of stress-related disorders such as depression and anxiety seen in women.


Behavioural Brain Research | 2009

Effects of unilateral amygdala dopamine depletion on behaviour in the elevated plus maze: Role of sex, hemisphere and retesting

Ron M. Sullivan; A. Duchesne; D. Hussain; J. Waldron; F. Laplante

A growing body of literature suggests that sex differences exist in both rodents and humans in terms of the central processing of stress and emotion, and an important factor in this regard may involve differential hemispheric specialization. The amygdala has been shown to be functionally asymmetrical in both rats and humans and its involvement in stress and emotion processing is well documented. Given that amygdala function is importantly modulated by dopamine (DA), the present study examined the effects of left vs. right unilateral DAergic depletion targeting the basolateral amygdala in male and female rats. We examined behaviour in the elevated plus maze over two consecutive days, and plasma adrenocorticotropic hormone (ACTH) levels in response to a separate 30min restraint stress. Overall, females showed significantly more exploration of open arms of the plus maze than males, while not differing in general activity reflected in closed arm entries. Significant SexxHemisphere interactions were observed for all measures related to open arm exploration, as right amygdala DA depletion produced an anxiolytic effect in males, increasing open arm exploration, but reduced this behaviour in females. Moreover, open arm exploration was greatly reduced on the second maze exposure in males, but unchanged in females. A SexxHemisphere interaction was also found for plasma ACTH levels. It is suggested that the role of amygdala DA on stress-related behaviour and physiology reflects inherent differences in amygdala function dependent on both sex and hemisphere.


Neuropharmacology | 2012

Cholinergic depletion in nucleus accumbens impairs mesocortical dopamine activation and cognitive function in rats

François Laplante; Zi-Wei Zhang; Frédéric Huppé-Gourgues; Marc M. Dufresne; Elvire Vaucher; Ron M. Sullivan

In rats, selective depletion of the cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) results in heightened behavioural sensitivity to amphetamine and impaired sensorimotor gating processes, suggesting a hyper-responsiveness to dopamine (DA) activity in the N.Acc. We hypothesized that local cholinergic depletion may also trigger distal functional alterations, particularly in prefrontal cortex (PFC). Adult male Sprague-Dawley rats were injected bilaterally in the N.Acc. with an immunotoxin targeting choline acetyltransferase. Two weeks later, cognitive function was assessed using the delayed alternation paradigm in the T-maze. The rats were then implanted with voltammetric recording electrodes in the ventromedial PFC to measure in vivo extracellular DA release in response to mild tail pinch stress. The PFC was also examined for density of tyrosine hydroxylase (TH)-labelled varicosities. In another cohort of control and lesioned rats, we measured post mortem tissue content of DA. Depletion of cholinergic neurons (restricted to N.Acc.) significantly impaired delayed alternation performance across delay intervals. While (basal) post mortem indices of PFC DA function were unaffected by N.Acc. lesions, in vivo mesocortical DA activation was markedly reduced; this deficit correlated significantly with cognitive impairments. TH-labelled varicosities however, were unaffected in cortical layer V relative to controls. These data suggest that selective depletion of cholinergic interneurons in N.Acc. triggers widespread functional impairments in mesocorticolimbic DA function and cognition. The possible relevance of these findings is also discussed in relation to schizophrenia, where reduced density of cholinergic neurons in ventral striatum has been reported.


Neuroscience Letters | 2012

Sex differences in the effects of perinatal anoxia on dopamine function in rats

François Laplante; Wayne G. Brake; Sara L. Chehab; Ron M. Sullivan

Birth complications involving reduced oxygen to the fetus pose risks for neurodevelopmental disorders like schizophrenia and ADHD, which involve central dopamine (DA) dysfunction and also show gender differences in incidence or severity. Here, we examine possible sex differences in the long-term consequences of perinatal anoxia in the rat, on central DA systems and DA-mediated behaviour. As adults, sensorimotor gating (prepulse inhibition, PPI) was differentially affected by anoxia in males and females, tending to be impaired only in males. Apomorphine-induced suppression of PPI was especially pronounced in males. Anoxia caused increases in amygdala DA levels in both sexes. However, sex-specific changes in DA and metabolite levels in prefrontal cortex and nucleus accumbens were found, suggesting a possible basis for some of the observed gender biases in certain neurodevelopmental disorders, sensitive to birth hypoxia.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2014

Mesocortical dopamine depletion and anxiety-related behavior in the rat: sex and hemisphere differences.

Ron M. Sullivan; M.M. Dufresne; D. Siontas; S.L. Chehab; J. Townsend; François Laplante

The mesocortical dopamine (DA) system of the rat plays an important role in prefrontal cortex (PFC) regulation of stress and emotion and exhibits functional hemispheric asymmetry for such processing. Since few studies examine sex differences in this context, we compared the effects of left vs. right unilateral PFC DA depletion in males and females in several behavioral situations associated with anxiety or aversion. Adult rats received unilateral injections of 6-hydroxydopamine (6-OHDA) or vehicle in the ventromedial (vm) PFC. Behavioral tests included a predator odor burying test, elevated plus maze and sucrose consumption with simple taste aversion. Tissue analysis confirmed that vmPFCs injected with 6-OHDA were depleted of DA (75-85%) compared to controls. Burying behavior and sucrose consumption were affected only by left lesions, similarly in both sexes. However, risk assessment behaviors were affected by right lesions in opposite directions in males and females. Behaviors modified preferentially by the left cortex thus showed less evidence of sex differences than those modulated by the right. While mesocortical DA depletion effects are lateralized, the nature of these effects can vary with sex and specific behavior. Such findings may be clinically significant, given the large gender differences in the incidence of mood and anxiety disorders, which also show many lateralized prefrontal abnormalities.

Collaboration


Dive into the Ron M. Sullivan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Duchesne

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Annie Duchesne

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Hussain

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge