Ron Ophir
Agricultural Research Organization, Volcani Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ron Ophir.
Journal of Experimental Botany | 2009
Gil Frank; Etan Pressman; Ron Ophir; Levia Althan; Rachel Shaked; Moshe Freedman; Shmuel Shen; Nurit Firon
Above-optimal temperatures reduce yield in tomato largely because of the high heat stress (HS) sensitivity of the developing pollen grains. The high temperature response, especially at this most HS-sensitive stage of the plant, is poorly understood. To obtain an overview of molecular mechanisms underlying the HS response (HSR) of microspores, a detailed transcriptomic analysis of heat-stressed maturing tomato microspores was carried out using a combination of Affymetrix Tomato Genome Array and cDNA-amplified fragment length polymorphism (AFLP) techniques. The results were corroborated by reverse transcription-PCR (RT-PCR) and immunoblot analyses. The data obtained reveal the involvement of specific members of the small heat shock protein (HSP) gene family, HSP70 and HSP90, in addition to the HS transcription factors A2 (HSFA2) and HSFA3, as well as factors other than the classical HS-responsive genes. The results also indicate HS regulation of reactive oxygen species (ROS) scavengers, sugars, plant hormones, and regulatory genes that were previously implicated in other types of stress. The use of cDNA-AFLP enabled the detection of genes representing pollen-specific functions that are missing from the tomato Affymetrix chip, such as those involved in vesicle-mediated transport and a pollen-specific, calcium-dependent protein kinase (CDPK2). For several genes, including LeHSFA2, LeHSP17.4-CII, as well as homologues of LeHSP90 and AtVAMP725, higher basal expression levels were detected in microspores of cv. Hazera 3042 (a heat-tolerant cultivar) compared with microspores of cv. Hazera 3017 (a heat-sensitive cultivar), marking these genes as candidates for taking part in microspore thermotolerance. This work provides a comprehensive analysis of the molecular events underlying the HSR of maturing microspores of a crop plant, tomato.
Plant Molecular Biology | 2009
Ron Ophir; Xuequn Pang; Tamar Halaly; Jaganatha Venkateswari; Shimon Lavee; David W. Galbraith; Etti Or
A grape-bud-oriented genomic platform was produced for a large-scale comparative analysis of bud responses to two stimuli of grape-bud dormancy release, hydrogen cyanamide (HC) and heat shock (HS). The results suggested considerable similarity in bud response to the stimuli, both in the repertoire of responding genes and in the temporary nature of the transcriptome reprogramming. Nevertheless, the bud response to HC was delayed, more condensed and stronger, as reflected by a higher number of regulated genes and a higher intensity of regulation compared to the response to HS. Integrating the changes occurring in response to both stimuli suggested perturbation of mitochondrial activity, development of oxidative stress and establishment of a situation that resembles hypoxia, which coincides with induction of glycolysis and fermentation, as well as changes in the interplay between ABA and ethylene metabolism. The latter is known to induce various growth responses in submerged plants and the possibility of a similar mechanism operating in the bud meristem during dormancy release is raised. The new link suggested between sub lethal stress, mitochondrial activity, hypoxic conditions, ethylene metabolism and cell enlargement during bud dormancy release may be instrumental in understanding the dormancy-release mechanism. Temporary increase of acetaldehyde, ethanol and ethylene in response to dormancy release stimuli demonstrated the predictive power of the working model, and its relevance to dormancy release was demonstrated by enhancement of bud break by exogenous ethylene and its inhibition by an ethylene signal inhibitor.
Plant Molecular Biology | 2011
Nir Dai; Shahar Cohen; Vitaly Portnoy; Galil Tzuri; Rotem Harel-Beja; Maya Pompan-Lotan; Nir Carmi; Genfa Zhang; Alex Diber; Sarah Pollock; Hagai Karchi; Yelena Yeselson; Marina Petreikov; Shmuel Shen; Uzi Sahar; Ran Hovav; Efraim Lewinsohn; Yakov Tadmor; David Granot; Ron Ophir; Amir Sherman; Zhangjun Fei; James J. Giovannoni; Yosef Burger; Nurit Katzir; Arthur A. Schaffer
The sweet melon fruit is characterized by a metabolic transition during its development that leads to extensive accumulation of the disaccharide sucrose in the mature fruit. While the biochemistry of the sugar metabolism pathway of the cucurbits has been well studied, a comprehensive analysis of the pathway at the transcriptional level allows for a global genomic view of sugar metabolism during fruit sink development. We identified 42 genes encoding the enzymatic reactions of the sugar metabolism pathway in melon. The expression pattern of the 42 genes during fruit development of the sweet melon cv Dulce was determined from a deep sequencing analysis performed by 454 pyrosequencing technology, comprising over 350,000 transcripts from four stages of developing melon fruit flesh, allowing for digital expression of the complete metabolic pathway. The results shed light on the transcriptional control of sugar metabolism in the developing sweet melon fruit, particularly the metabolic transition to sucrose accumulation, and point to a concerted metabolic transition that occurs during fruit development.
Journal of Experimental Botany | 2009
Idit Ginzberg; Gilli Barel; Ron Ophir; Enosh Tzin; Zaccharia Tanami; Thippeswamy Muddarangappa; Walter De Jong; Edna Fogelman
Potato (Solanum tuberosum L.) periderm is composed of the meristematic phellogen that gives rise to an external layer of suberized phellem cells (the skin) and the internal parenchyma-like phelloderm. The continuous addition of new skin layers and the sloughing of old surface layers during tuber maturation results in smooth, shiny skin. However, smooth-skin varieties frequently develop unsightly russeting in response to high soil temperatures. Microscopic observation of microtubers exposed to high temperatures (37 degrees C) suggested heat-enhanced development and accumulation of suberized skin-cell layers. To identify the genes involved in the periderm response to heat stress, skin and phelloderm samples collected separately from immature tubers exposed to high soil temperatures (33 degrees C) and controls were subjected to transcriptome profiling using a potato cDNA array. As expected, the major functional group that was differentially expressed in both skin and phelloderm consisted of stress-related genes; however, while the major up-regulated phelloderm genes coded for heat-shock proteins, many of the skins most up-regulated sequences were similar to genes involved in the development of protective/symbiotic membranes during plant-microbe interactions. The primary activities regulated by differentially expressed peridermal transcription factors were response to stress (33%) and cell proliferation and differentiation (28%), possibly reflecting the major processes occurring in the heat-treated periderm and implying the integrated activity of the stress response and tissue development. Accumulating data suggest that the periderm, a defensive tissue, responds to heat stress by enhancing the production and accumulation of periderm/skin layers to create a thick protective cover. Skin russeting may be an indirect outcome; upon continued expansion of the tuber, the inflexible skin cracks while new layers are produced below it, resulting in a rough skin texture.
Plant Science | 2013
Ravit Goldberg-Moeller; Liron Shalom; Lyudmila Shlizerman; Sivan Samuels; Naftali Zur; Ron Ophir; Eduardo Blumwald; Avi Sadka
Gibberellins (GAs) affect flowering in a species-dependent manner: in long-day and biennial plants they promote flowering, whereas in other plants, including fruit trees, they inhibit it. The mechanism by which GAs promote flowering in Arabidopsis is not fully understood, although there is increasing evidence that they may act through more than one pathway. In citrus, GA treatment during the flowering induction period reduces the number of flowers; the mechanism of flowering inhibition is not clear; the hormone may act directly in the bud to determine its fate toward vegetative growth, generate a mobile signal, or both. However, bud metabolic and regulatory pathways are expected to be altered upon GA treatment. We investigated the effect of GA treatments on global gene expression in the bud during the induction period, and on the expression of key flowering genes. Overall, about 2000 unigenes showed altered expression, with about 300 showing at least a two-fold change. Changes in flavonoids and trehalose metabolic pathways were validated, and among other altered pathways, such as cell-wall components, were discussed in light of GAs inhibition of flowering. Among flowering-control genes, GA treatment resulted in reduced mRNA levels of FT, AP1 and a few flower-organ-identity genes. mRNA levels of FLC-like and SOC1 were not altered by the treatment, whereas LEAFY mRNA was induced in GA-treated buds. Surprisingly, FT expression was higher in buds than leaves. Overall, our results shed light on changes taking place in the bud during flowering induction in response to GA treatment.
PLOS ONE | 2012
Liron Shalom; Sivan Samuels; Naftali Zur; Lyudmila Shlizerman; Hanita Zemach; Mira Weissberg; Ron Ophir; Eduardo Blumwald; Avi Sadka
Alternate bearing (AB) is the process in fruit trees by which cycles of heavy yield (ON crop) one year are followed by a light yield (OFF crop) the next. Heavy yield usually reduces flowering intensity the following year. Despite its agricultural importance, how the developing crop influences the following years return bloom and yield is not fully understood. It might be assumed that an ‘AB signal’ is generated in the fruit, or in another organ that senses fruit presence, and moves into the bud to determine its fate—flowering or vegetative growth. The bud then responds to fruit presence by altering regulatory and metabolic pathways. Determining these pathways, and when they are altered, might indicate the nature of this putative AB signal. We studied bud morphology, the expression of flowering control genes, and global gene expression in ON- and OFF-crop buds. In May, shortly after flowering and fruit set, OFF-crop buds were already significantly longer than ON-crop buds. The number of differentially expressed genes was higher in May than at the other tested time points. Processes differentially expressed between ON- and OFF-crop trees included key metabolic and regulatory pathways, such as photosynthesis and secondary metabolism. The expression of genes of trehalose metabolism and flavonoid metabolism was validated by nCounter technology, and the latter was confirmed by metabolomic analysis. Among genes induced in OFF-crop trees was one homologous to SQUAMOSA PROMOTER BINDING-LIKE (SPL), which controls juvenile-to-adult and annual phase transitions, regulated by miR156. The expression pattern of SPL-like, miR156 and other flowering control genes suggested that fruit load affects bud fate, and therefore development and metabolism, a relatively long time before the flowering induction period. Results shed light on some of the metabolic and regulatory processes that are altered in ON and OFF buds.
Nature Communications | 2014
Shahar Cohen; Maxim Itkin; Yelena Yeselson; Galil Tzuri; Vitaly Portnoy; Rotem Harel-Baja; Shery Lev; Uzi Sa’ar; Rachel Davidovitz-Rikanati; Nadine Baranes; Einat Bar; Dalia Wolf; Marina Petreikov; Shmuel Shen; Shifra Ben-Dor; Ilana Rogachev; Asaph Aharoni; Tslil Ast; Maya Schuldiner; Eduard Belausov; Ravit Eshed; Ron Ophir; Amir Sherman; Benedikt Frei; H. Ekkehard Neuhaus; Yimin Xu; Zhangjun Fei; James J. Giovannoni; Efraim Lewinsohn; Yaakov Tadmor
Taste has been the subject of human selection in the evolution of agricultural crops, and acidity is one of the three major components of fleshy fruit taste, together with sugars and volatile flavour compounds. We identify a family of plant-specific genes with a major effect on fruit acidity by map-based cloning of C. melo PH gene (CmPH) from melon, Cucumis melo taking advantage of the novel natural genetic variation for both high and low fruit acidity in this species. Functional silencing of orthologous PH genes in two distantly related plant families, cucumber and tomato, produced low-acid, bland tasting fruit, showing that PH genes control fruit acidity across plant families. A four amino-acid duplication in CmPH distinguishes between primitive acidic varieties and modern dessert melons. This fortuitous mutation served as a preadaptive antecedent to the development of sweet melon cultigens in Central Asia over 1,000 years ago.
Virology | 2014
Nor Chejanovsky; Ron Ophir; Michal Sharabi Schwager; Yossi Slabezki; Smadar Grossman; Diana Cox-Foster
Colony Collapse Disorder (CCD), a special case of collapse of honey bee colonies, has resulted in significant losses for beekeepers. CCD-colonies show abundance of pathogens which suggests that they have a weakened immune system. Since honey bee viruses are major players in colony collapse and given the important role of viral RNA interference (RNAi) in combating viral infections we investigated if CCD-colonies elicit an RNAi response. Deep-sequencing analysis of samples from CCD-colonies from US and Israel revealed abundant small interfering RNAs (siRNA) of 21-22 nucleotides perfectly matching the Israeli acute paralysis virus (IAPV), Kashmir virus and Deformed wing virus genomes. Israeli colonies showed high titers of IAPV and a conserved RNAi-pattern of matching the viral genome. That was also observed in sample analysis from colonies experimentally infected with IAPV. Our results suggest that CCD-colonies set out a siRNA response that is specific against predominant viruses associated with colony losses.
Environmental Microbiology | 2008
Moran Yishay; Saul Burdman; Angel Valverde; Tal Luzzatto; Ron Ophir; Iris Yedidia
The capability of Pectobacterium carotovorum isolates to infect monocotyledonous plants has been previously reported; however, no full consideration was given to characterize the association between such isolates and their monocot hosts. To assess differences in aggressiveness among P. carotovorum ssp. carotovorum isolates originating from monocotyledonous or dicotyledonous plants, we used as model plants two susceptible monocot hosts, the ornamentals Zantedeschia aethiopica and Ornithogalum dubium, as well as two common dicot hosts, Solanum tuberosum and Brassica oleracea. Using virulence assays and different genetic analyses we characterized P. carotovorum ssp. carotovorum isolates from diverse geographical locations which originated from plants belonging to four unrelated orders of monocots and five orders of dicots. Invariably, isolates originating from monocots exhibited higher virulence towards the tested monocot plants than dicot isolates, independently of their geographical source. Moreover, monocot and dicot isolates were clearly differentiated by various genetic analyses, such as 16S rRNA sequence clustering, intergenic transcribed spacer-PCR (ITS-PCR) banding pattern and amplified fragment length polymorphism (AFLP). We propose that the observed relationship between pathogenicity and genetic diversity among P. carotovorum ssp. carotovorum isolates reveals a co-evolutionary specialization trend in the interaction between this pathogen and its hosts.
PLOS ONE | 2014
Ron Ophir; Amir Sherman; Mor Rubinstein; Ravit Eshed; Michal Sharabi Schwager; Rotem Harel-Beja; Irit Bar-Ya'akov; Doron Holland
Pomegranate is a valuable crop that is grown commercially in many parts of the world. Wild species have been reported from India, Turkmenistan and Socotra. Pomegranate fruit has a variety of health-beneficial qualities. However, despite this crops importance, only moderate effort has been invested in studying its biochemical or physiological properties or in establishing genomic and genetic infrastructures. In this study, we reconstructed a transcriptome from two phenotypically different accessions using 454-GS-FLX Titanium technology. These data were used to explore the functional annotation of 45,187 fully annotated contigs. We further compiled a genetic-variation resource of 7,155 simple-sequence repeats (SSRs) and 6,500 single-nucleotide polymorphisms (SNPs). A subset of 480 SNPs was sampled to investigate the genetic structure of the broad pomegranate germplasm collection at the Agricultural Research Organization (ARO), which includes accessions from different geographical areas worldwide. This subset of SNPs was found to be polymorphic, with 10.7% loci with minor allele frequencies of (MAF<0.05). These SNPs were successfully used to classify the ARO pomegranate collection into two major groups of accessions: one from India, China and Iran, composed of mainly unknown country origin and which was more of an admixture than the other major group, composed of accessions mainly from the Mediterranean basin, Central Asia and California. This study establishes a high-throughput transcriptome and genetic-marker infrastructure. Moreover, it sheds new light on the genetic interrelations between pomegranate species worldwide and more accurately defines their genetic nature.