Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rona N. Sturrock is active.

Publication


Featured researches published by Rona N. Sturrock.


Plant Cell Reports | 2010

The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function

Jun-Jun Liu; Rona N. Sturrock; Abul K. M. Ekramoddoullah

Thaumatin-like proteins (TLPs) are the products of a large, highly complex gene family involved in host defence and a wide range of developmental processes in fungi, plants, and animals. Despite their dramatic diversification in organisms, TLPs appear to have originated in early eukaryotes and share a well-defined TLP domain. Nonetheless, determination of the roles of individual members of the TLP superfamily remains largely undone. This review summarizes recent advances made in elucidating the varied TLP activities related to host resistance to pathogens and other physiological processes. Also discussed is the current state of knowledge on the origins and types of TLPs, regulation of gene expression, and potential biotechnological applications for TLPs.


BMC Genomics | 2013

Transcriptome analysis of Pinus monticola primary needles by RNA-seq provides novel insight into host resistance to Cronartium ribicola

Jun-Jun Liu; Rona N. Sturrock; Ross Benton

BackgroundFive-needle pines are important forest species that have been devastated by white pine blister rust (WPBR, caused by Cronartium ribicola) across North America. Currently little transcriptomic and genomic data are available to understand molecular interactions in the WPBR pathosystem.ResultsWe report here RNA-seq analysis results using Illumina deep sequencing of primary needles of western white pine (Pinus monticola) infected with WPBR. De novo gene assembly was used to generate the first P. monticola consensus transcriptome, which contained 39,439 unique transcripts with an average length of 1,303 bp and a total length of 51.4 Mb. About 23,000 P. monticola unigenes produced orthologous hits in the Pinus gene index (PGI) database (BLASTn with E values < e-100) and 6,300 genes were expressed actively (at RPKM ≥ 10) in the healthy tissues. Comparison of transcriptomes from WPBR-susceptible and -resistant genotypes revealed a total of 979 differentially expressed genes (DEGs) with a significant fold change > 1.5 during P. monticola- C. ribicola interactions. Three hundred and ten DEGs were regulated similarly in both susceptible and resistant seedlings and 275 DEGs showed regulatory differences between susceptible and resistant seedlings post infection by C. ribicola. The DEGs up-regulated in resistant seedlings included a set of putative signal receptor genes encoding disease resistance protein homologs, calcineurin B-like (CBL)-interacting protein kinases (CIPK), F-box family proteins (FBP), and abscisic acid (ABA) receptor; transcriptional factor (TF) genes of multiple families; genes homologous to apoptosis-inducing factor (AIF), flowering locus T-like protein (FT), and subtilisin-like protease. DEGs up-regulated in resistant seedlings also included a wide diversity of down-stream genes (encoding enzymes involved in different metabolic pathways, pathogenesis-related -PR proteins of multiple families, and anti-microbial proteins). A large proportion of the down-regulated DEGs were related to photosystems, the metabolic pathways of carbon fixation and flavonoid biosynthesis.ConclusionsThe novel P. monticola transcriptome data provide a basis for future studies of genetic resistance in a non-model, coniferous species. Our global gene expression profiling presents a comprehensive view of transcriptomic regulation in the WPBR pathosystem and yields novel insights on molecular and biochemical mechanisms of disease resistance in conifers.


Phytopathology | 2004

Gene Cloning and Tissue Expression Analysis of a PR-5 Thaumatin-Like Protein in Phellinus weirii-Infected Douglas-Fir

Arezoo Zamani; Rona N. Sturrock; Abul K. M. Ekramoddoullah; Jun Jun Liu; Xueshu Yu

ABSTRACT In western North America, Douglas-fir (Pseudotsuga menziesii) is the most economically important conifer species susceptible to laminated root rot caused by Phellinus weirii. While attempting to internally sequence an endochitinase found to be up-regulated in P. weirii-infected Douglas-fir roots, we obtained overlapping peptide fragments showing 28% similarity with a PR-5 thaumatin-like protein (TLP) designated PmTLP (Pm for Pseudotsuga menziesi). A rabbit polyclonal antibody was reared against a synthetic peptide composed of a 29-amino-acid-long, conserved, internal sequence of PmTLP and purified by immunoaffinity. Western immunoblot analysis of infected roots of 24-year-old coastalfir showed significantly higher amounts of PmTLP (P < 0.01) closest to the point of P. weirii inoculation and infection than in uninfected regions of the same root. The antibody was also used to screen for PmTLP in roots of 25-year-old interior Douglas-firs naturally infected with a related pathogen, Armillaria ostoyae, and results showed significantly higher levels of PmTLP in bark tissues adjacent to infection (P < 0.05) than in uninfected tissue. Using polymerase chain reaction (PCR)-based cloning, the cDNA of PmTLP was shown to have a 702-bp open reading frame with a signal peptide cleavage site at 155 bp corresponding to a 29-amino-acid-long residue prior to the start of the N-terminal. Based on the deduced amino acid sequence, the molecular mass of the putative PmTLP was calculated to be 21.0 kDa with an isoelectric point of 3.71. Alignment analysis of PmTLP cDNA with a representative genomic DNA PCR sequence showed presence of one intron of variable size, within the coding region. The induction of PmTLP at the site of root infection and its presence in needle tissue suggests a general role for this protein in adaptation to stress and may be part of an integrated defense response initiated by the host to impede further pathogen spread.


Journal of Proteomics | 2008

A proteomics approach to identify proteins differentially expressed in Douglas-fir seedlings infected by Phellinus sulphurascens

M. Aminul Islam; Rona N. Sturrock; Abul K. M. Ekramoddoullah

We carried out a comparative proteomic study to explore the molecular mechanisms that underlie the defense response of Douglas-fir (DF, Pseudotsuga menziesii) to laminated root rot, a disease caused by Phellinus sulphurascens. 2-DE was conducted on proteins extracted from roots of laboratory-grown, young DF seedlings inoculated with P. sulphurascens. A total of 1303 proteins was detected in 7 dpi infected and uninfected root samples. Among these 1303 proteins, 277 showed differential expression that was statistically significant (p<0.05). Of these 277 proteins, 74 upregulated and 85 downregulated proteins showed at least a two-fold change from controls. Forty seven upregulated and 23 downregulated proteins were selected to be excised and analyzed using LC-MS/MS followed by peptide matching. Our results indicate that the major proteins differentially expressed in P. sulphurascens-infected DF seedlings include those in the following functional groups: disease/defense (27%), metabolism (16%), transcription factors (11%), signal transduction (10%), secondary metabolism (7%) and energy (4%). A number of additional proteins involved in cell structure (3%) and protein synthesis (3%) were also identified. By providing an initial database of candidate pathogenesis-related proteins for the DF-Phellinus sulphurascens pathosystem the results of this study will enable future detailed investigation of gene expression and function.


Phytopathology | 2007

Host-Pathogen Interactions in Douglas-Fir Seedlings Infected by Phellinus sulphurascens

Rona N. Sturrock; M. A. Islam; Abul K. M. Ekramoddoullah

ABSTRACT Several aspects of the host-pathogen interaction between Douglas-fir (Pseudotsuga menziesii) and the fungal pathogen Phellinus sulphurascens were investigated in an in vitro inoculation system using young seedlings and fungal mycelia. Light microscopy confirmed that P. sulphurascens mycelia can successfully penetrate host epidermal cells within 3 days postinoculation (dpi). Extensive fungal colonization and cortical cell decay occurred within 14 dpi. Western immunoblot studies showed significant upregulation (five to sixfold) of four specific pathogenesis-related (PR) proteins in infected roots. These proteins were a Douglas-fir thaumatin-like protein (PmTLP), an endochitinase protein (ECP), a Douglas-fir PR10 (DF-PR10) protein (PsemI), and a 10.6-kDa antimicrobial peptide (PmAMP1). The highest accumulation of PmTLP and PmAMP1 occurred at 12 dpi, whereas accumulations of the ECP and DF-PR10 proteins peaked at 7 dpi. For both inoculated and control Douglas-fir seedlings, only one of the four PR proteins, PmAMP1, was clearly detectable in needles. Immunolocalization experiments using fluorescein isothiocyanate-conjugated secondary antibodies confirmed accumulation of all four PR proteins mainly in and around cell walls of root cortical tissues. Overall, the highest immunofluorescence was observed in infected roots at 12 dpi, whereas labeling in control roots was negligible at all sample times. The ECP produced the highest fluorescence; the DF-PR10 the lowest. Upregulation and localization of these PR proteins in cortical tissues of inoculated roots suggest that they play a defensive role in response to infection by P. sulphurascens. This in vitro inoculation system will facilitate further proteomic and genomic studies of this important pathosystem.


Phytopathology | 2010

Identification, Characterization, and Expression Analyses of Class II and IV Chitinase Genes from Douglas-Fir Seedlings Infected by Phellinus sulphurascens

M. A. Islam; Rona N. Sturrock; H. L. Williams; Abul K. M. Ekramoddoullah

Laminated root rot (LRR) disease, caused by the fungus Phellinus sulphurascens, is a major threat to coastal Douglas-fir (DF) (Pseudotsuga menziesii) forests in western North America. Understanding host-pathogen interactions of this pathosystem is essential to manage this important conifer root disease. Our research objectives were to identify DF pathogenesis-related (PR) genes and analyze their expression patterns over the course of infection. We constructed a cDNA library of Phellinus sulphurascens-infected DF seedling roots and sequenced a total of 3,600 random cDNA clones from this library. One of the largest groups of identified genes (203 cDNA clones) matched with chitinase genes reported in other plant species. We identified at least three class II and six class IV chitinase genes from DF seedlings. Quantitative reverse-transcriptase polymerase chain reaction analyses showed significant differential expression patterns locally in root tissues and systemically in needle tissues after fungal invasion. Nonetheless, there was a common trend in gene expression patterns for most of the chitinase genes: an upregulation within 12 h of pathogen inoculation followed by down-regulation within 2 to 3 days postinoculation (dpi), and then further upregulation within 5 to 7 dpi. Western immunoblot data showed differential accumulation of class IV chitinases in Phellinus sulphurascens-infected DF seedlings. Further detailed functional analyses will help us to understand the specific role of DF chitinases in defense against Phellinus sulphurascens infection.


BMC Plant Biology | 2014

Western white pine SNP discovery and high-throughput genotyping for breeding and conservation applications

Jun-Jun Liu; Richard A. Sniezko; Rona N. Sturrock; Hao Chen

BackgroundWestern white pine (WWP, Pinus monticola Douglas ex D. Don) is of high interest in forest breeding and conservation because of its high susceptibility to the invasive disease white pine blister rust (WPBR, caused by the fungus Cronartium ribicola J. C. Fisch). However, WWP lacks genomic resource development and is evolutionarily far away from plants with available draft genome sequences. Here we report a single nucleotide polymorphism (SNP) study by bulked segregation-based RNA-Seq analysis.ResultsA collection of resistance germplasm was used for construction of cDNA libraries and SNP genotyping. Approximately 36–89 million 2 × 100-bp reads were obtained per library and de-novo assembly generated the first shoot-tip reference transcriptome containing a total of 54,661 unique transcripts. Bioinformatic SNP detection identified >100,000 high quality SNPs in three expressed candidate gene groups: Pinus highly conserved genes (HCGs), differential expressed genes (DEGs) in plant defense response, and resistance gene analogs (RGAs). To estimate efficiency of in-silico SNP discovery, genotyping assay was developed by using Sequenom iPlex and it unveiled SNP success rates from 40.1% to 61.1%. SNP clustering analyses consistently revealed distinct populations, each composed of multiple full-sib seed families by parentage assignment in the WWP germplasm collection. Linkage disequilibrium (LD) analysis identified six genes in significant association with major gene (Cr2) resistance, including three RGAs (two NBS-LRR genes and one receptor-like protein kinase -RLK gene), two HCGs, and one DEG. At least one SNP locus provided an excellent marker for Cr2 selection across P. monticola populations.ConclusionsThe WWP shoot tip transcriptome and those validated SNP markers provide novel genomic resources for genetic, evolutionary and ecological studies. SNP loci of those candidate genes associated with resistant phenotypes can be used as positional and functional variation sites for further characterization of WWP major gene resistance against C. ribicola. Our results demonstrate that integration of RNA-seq-based transcriptome analysis and high-throughput genotyping is an effective approach for discovery of a large number of nucleotide variations and for identification of functional gene variants associated with adaptive traits in a non-model species.


Fungal Biology | 2009

Ultrastructural studies of Phellinus sulphurascens infection of Douglas-fir roots and immunolocalization of host pathogenesis-related proteins

M.A. Islam; Rona N. Sturrock; T.A. Holmes; Abul K. M. Ekramoddoullah

Interactions between roots of Douglas-fir (DF; Pseudotsuga menziesii) seedlings and the laminated root rot fungus Phellinus sulphurascens were investigated using scanning and transmission electron microscopy and immunogold labelling techniques. Scanning electron micrographs revealed that P. sulphurascens hyphae colonize root surfaces and initiate the penetration of root epidermal tissues by developing appressoria within 2 d postinoculation (dpi). During early colonization, intra- and intercellular fungal hyphae were detected. They efficiently disintegrate cellular components of the host including cell walls and membranes. P. sulphurascens hyphae penetrate host cell walls by forming narrow hyphal tips and a variety of haustoria-like structures which may play important roles in pathogenic interactions. Ovomucoid-WGA (wheat germ agglutinin) conjugated gold particles (10 nm) confirmed the occurrence and location of P. sulphurascens hyphae, while four specific host pathogenesis-related (PR) protein antibodies conjugated with protein A-gold complex (20 nm) showed the localization and abundance of these PR proteins in infected root tissues. A thaumatin-like protein and an endochitinase-like protein were both strongly evident and localized in host cell membranes. A DF-PR10 protein was localized in the cell walls and cytoplasm of host cells while an antimicrobial peptide occurred in host cell walls. A close association of some PR proteins with P. sulphurascens hyphae suggests their potential antifungal activities in DF roots.


Canadian Journal of Plant Pathology-revue Canadienne De Phytopathologie | 1998

A new technique for inoculation of conifer seedling roots with the laminated root rot pathogen, Phellinus weirii

Rona N. Sturrock; G. Reynolds

The efficacy of a novel inoculation technique for infecting conifer seedling roots with Phellinus weirii was demonstrated, Inoculum units were prepared from P. weirii-colonized stem segments of red alder (Alnus rubra) and branch segments of Douglas-fir (Pseudotsuga menziesii). In one experiment, potted and outplanted seedlings of nine coniferous species of known susceptibility to P. weirii (Douglas-fir, grand fir, lodgepole pine, noble fir, Sitka spruce, western hemlock, western redcedar, western white pine, and yellow cedar) were inoculated using the novel inoculum units. For all nine species combined, transfer of ectotrophic P. weirii was greater for potted seedlings than for outplanted seedlings (93% vs. 48%). However, rates of endotrophic P. weirii infection were similar for potted and outplanted seedlings (81% and 77% respectively). Results of this experiment parallel reported species susceptibility to P. weirii. In a second experiment, rooted cuttings of English yew and Pacific yew, coniferous speci...


PLOS ONE | 2016

Genetic Diversity and Population Structure of Whitebark Pine (Pinus albicaulis Engelm.) in Western North America.

Jun-Jun Liu; Richard A. Sniezko; Michael Murray; Ning Wang; Hao Chen; Arezoo Zamany; Rona N. Sturrock; Douglas P. Savin; Angelia Kegley

Whitebark pine (WBP, Pinus albicaulis Engelm.) is an endangered conifer species due to heavy mortality from white pine blister rust (WPBR, caused by Cronartium ribicola) and mountain pine beetle (Dendroctonus ponderosae). Information about genetic diversity and population structure is of fundamental importance for its conservation and restoration. However, current knowledge on the genetic constitution and genomic variation is still limited for WBP. In this study, an integrated genomics approach was applied to characterize seed collections from WBP breeding programs in western North America. RNA-seq analysis was used for de novo assembly of the WBP needle transcriptome, which contains 97,447 protein-coding transcripts. Within the transcriptome, single nucleotide polymorphisms (SNPs) were discovered, and more than 22,000 of them were non-synonymous SNPs (ns-SNPs). Following the annotation of genes with ns-SNPs, 216 ns-SNPs within candidate genes with putative functions in disease resistance and plant defense were selected to design SNP arrays for high-throughput genotyping. Among these SNP loci, 71 were highly polymorphic, with sufficient variation to identify a unique genotype for each of the 371 individuals originating from British Columbia (Canada), Oregon and Washington (USA). A clear genetic differentiation was evident among seed families. Analyses of genetic spatial patterns revealed varying degrees of diversity and the existence of several genetic subgroups in the WBP breeding populations. Genetic components were associated with geographic variables and phenotypic rating of WPBR disease severity across landscapes, which may facilitate further identification of WBP genotypes and gene alleles contributing to local adaptation and quantitative resistance to WPBR. The WBP genomic resources developed here provide an invaluable tool for further studies and for exploitation and utilization of the genetic diversity preserved within this endangered conifer and other five-needle pines.

Collaboration


Dive into the Rona N. Sturrock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun-Jun Liu

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar

Richard A. Sniezko

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Arezoo Zamani

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar

Holly Williams

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar

Isabel Leal

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar

Arezoo Zamany

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar

Danelle Chan

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar

Dezene P. W. Huber

University of Northern British Columbia

View shared research outputs
Top Co-Authors

Avatar

Hao Chen

Natural Resources Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge