Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald E. Pearlman is active.

Publication


Featured researches published by Ronald E. Pearlman.


PLOS ONE | 2009

Microarray analyses of gene expression during the Tetrahymena thermophila life cycle.

Wei Miao; Jie Xiong; Josephine Bowen; Wei Wang; Yifan Liu; Olga Braguinets; Jörg Grigull; Ronald E. Pearlman; Eduardo Orias; Martin A. Gorovsky

Background The model eukaryote, Tetrahymena thermophila, is the first ciliated protozoan whose genome has been sequenced, enabling genome-wide analysis of gene expression. Methodology/Principal Findings A genome-wide microarray platform containing the predicted coding sequences (putative genes) for T. thermophila is described, validated and used to study gene expression during the three major stages of the organisms life cycle: growth, starvation and conjugation. Conclusions/Significance Of the ∼27,000 predicted open reading frames, transcripts homologous to only ∼5900 are not detectable in any of these life cycle stages, indicating that this single-celled organism does indeed contain a large number of functional genes. Transcripts from over 5000 predicted genes are expressed at levels >5× corrected background and 95 genes are expressed at >250× corrected background in all stages. Transcripts homologous to 91 predicted genes are specifically expressed and 155 more are highly up-regulated in growing cells, while 90 are specifically expressed and 616 are up-regulated during starvation. Strikingly, transcripts homologous to 1068 predicted genes are specifically expressed and 1753 are significantly up-regulated during conjugation. The patterns of gene expression during conjugation correlate well with the developmental stages of meiosis, nuclear differentiation and DNA elimination. The relationship between gene expression and chromosome fragmentation is analyzed. Genes encoding proteins known to interact or to function in complexes show similar expression patterns, indicating that co-ordinate expression with putative genes of known function can identify genes with related functions. New candidate genes associated with the RNAi-like process of DNA elimination and with meiosis are identified and the late stages of conjugation are shown to be characterized by specific expression of an unexpectedly large and diverse number of genes not involved in nuclear functions.


Analytical Biochemistry | 1983

Hybridization of nucleic acids directly in agarose gels

Smiley G‐S Tsao; Clifford F. Brunk; Ronald E. Pearlman

Nucleic acids, both DNA and RNA, separated on agarose gels can be visualized by direct hybridization of the dried gel with appropriate radioactive probes. This method does not involve the transfer of the nucleic acid from the gel. The method requires less manipulation than other procedures; it is extremely rapid, sensitive, and inexpensive. These attributes make this procedure a valuable alternative or supplement to the commonly used methods for visualization by hybridization of nucleic acids separated on agarose gels.


Genes & Development | 2008

Study of an RNA helicase implicates small RNA–noncoding RNA interactions in programmed DNA elimination in Tetrahymena

Lucia Aronica; Janna Bednenko; Tomoko Noto; Leroi V. DeSouza; K.W. M. Siu; Josef Loidl; Ronald E. Pearlman; Martin A. Gorovsky; Kazufumi Mochizuki

Tetrahymena eliminates micronuclear-limited sequences from the developing macronucleus during sexual reproduction. Homology between the sequences to be eliminated and approximately 28-nucleotide small RNAs (scnRNAs) associated with an Argonaute family protein Twi1p likely underlies this elimination process. However, the mechanism by which Twi1p-scnRNA complexes identify micronuclear-limited sequences is not well understood. We show that a Twi1p-associated putative RNA helicase Ema1p is required for the interaction between Twi1p and chromatin. This requirement explains the phenotypes of EMA1 KO strains, including loss of selective down-regulation of scnRNAs homologous to macronuclear-destined sequences, loss of H3K9 and K27 methylation in the developing new macronucleus, and failure to eliminate DNA. We further demonstrate that Twi1p interacts with noncoding transcripts derived from parental and developing macronuclei and this interaction is greatly reduced in the absence of Ema1p. We propose that Ema1p functions in DNA elimination by stimulating base-pairing interactions between scnRNAs and noncoding transcripts in both parental and developing new macronuclei.


The EMBO Journal | 1995

Genetic code deviations in the ciliates: evidence for multiple and independent events.

Tourancheau Ab; Tsao N; Lawrence A. Klobutcher; Ronald E. Pearlman; Adoutte A

In several species of ciliates, the universal stop codons UAA and UAG are translated into glutamine, while in the euplotids, the glutamine codon usage is normal, but UGA appears to be translated as cysteine. Because the emerging position of this monophyletic group in the eukaryotic lineage is relatively late, this deviant genetic code represents a derived state of the universal code. The question is therefore raised as to how these changes arose within the evolutionary pathways of the phylum. Here, we have investigated the presence of stop codons in alpha tubulin and/or phosphoglycerate kinase gene coding sequences from diverse species of ciliates scattered over the phylogenetic tree constructed from 28S rRNA sequences. In our data set, when deviations occur they correspond to in frame UAA and UAG coding for glutamine. By combining these new data with those previously reported, we show that (i) utilization of UAA and UAG codons occurs to different extents between, but also within, the different classes of ciliates and (ii) the resulting phylogenetic pattern of deviations from the universal code cannot be accounted for by a scenario involving a single transition to the unusual code. Thus, contrary to expectations, deviations from the universal genetic code have arisen independently several times within the phylum.


Cell | 2010

The Tetrahymena argonaute-binding protein Giw1p directs a mature argonaute-siRNA complex to the nucleus.

Tomoko Noto; Henriette M. Kurth; Kensuke Kataoka; Lucia Aronica; Leroi V. DeSouza; K. W. Michael Siu; Ronald E. Pearlman; Martin A. Gorovsky; Kazufumi Mochizuki

Emerging evidence suggests that RNA interference (RNAi)-related processes act both in the cytoplasm and in the nucleus. However, the process by which the RNAi machinery is transported into the nucleus remains poorly understood. The Tetrahymena Argonaute protein Twi1p localizes to the nucleus and is crucial for small RNA-directed programmed DNA elimination. In this study, we identify Giw1p, which binds to Twi1p and is required for its nuclear localization. Furthermore, the endoribonuclease (Slicer) activity of Twi1p plays a vital role in the removal of one of the two strands of Twi1p-associated small interfering RNAs (siRNAs), leading to a functionally mature Twi1p-siRNA complex. Slicer activity is also shown to be required for nuclear localization of Twi1p and for its association with Giw1p. These results suggest that Giw1p senses the state of Twi1p-associated siRNAs and selectively transports the mature Twi1p-siRNA complex into the nucleus.


Chromosoma | 1990

Telomere and centromere DNA are associated with the cores of meiotic prophase chromosomes

Peter B. Moens; Ronald E. Pearlman

Mouse (Mus musculus) whole-mount, surface-spread, meiotic prophase chromosomes have an axial which extend chromatin loops. This arrangement permits a novel approach to the analysis of chromosome structure. Using in situ hybridization, the types of DNA sequences preferentially associated with the SC and the types located primarily in the chromatin loops can be determined. With biotinylated probes, detected by avidin conjugated to FITC, we present evidence for differential chromatin-SC interaction. The telomere sequence (TTAGGG)n is associated exclusively with the two ends of each autosomal SC rather than with the chromatin loops. The minor satellite DNA sequences are predominantly localized to the centromeric region of the SC, as defined by CREST serum anti-centromere antibodies. In contrast, the major satellite DNA probe hybridizes to the chromatin loops of the centromeric heterochromatin, and a probe containing a LINE sequence hybridizes to chromatin loops in general with no obvious preference for the SC. These observations demonstrate that, depending on the type of DNA sequence, the chromatin has different properties in regard to its association with the SC.


BMC Genomics | 2008

Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure

Robert S. Coyne; Mathangi Thiagarajan; Kristie M. Jones; Jennifer R. Wortman; Luke J. Tallon; Brian J. Haas; Donna Cassidy-Hanley; Emily A. Wiley; Joshua J. Smith; Kathleen Collins; Suzanne R. Lee; Mary T. Couvillion; Yifan Liu; Jyoti Garg; Ronald E. Pearlman; Eileen P. Hamilton; Eduardo Orias; Jonathan A. Eisen; Barbara A. Methé

BackgroundTetrahymena thermophila, a widely studied model for cellular and molecular biology, is a binucleated single-celled organism with a germline micronucleus (MIC) and somatic macronucleus (MAC). The recent draft MAC genome assembly revealed low sequence repetitiveness, a result of the epigenetic removal of invasive DNA elements found only in the MIC genome. Such low repetitiveness makes complete closure of the MAC genome a feasible goal, which to achieve would require standard closure methods as well as removal of minor MIC contamination of the MAC genome assembly. Highly accurate preliminary annotation of Tetrahymenas coding potential was hindered by the lack of both comparative genomic sequence information from close relatives and significant amounts of cDNA evidence, thus limiting the value of the genomic information and also leaving unanswered certain questions, such as the frequency of alternative splicing.ResultsWe addressed the problem of MIC contamination using comparative genomic hybridization with purified MIC and MAC DNA probes against a whole genome oligonucleotide microarray, allowing the identification of 763 genome scaffolds likely to contain MIC-limited DNA sequences. We also employed standard genome closure methods to essentially finish over 60% of the MAC genome. For the improvement of annotation, we have sequenced and analyzed over 60,000 verified EST reads from a variety of cellular growth and development conditions. Using this EST evidence, a combination of automated and manual reannotation efforts led to updates that affect 16% of the current protein-coding gene models. By comparing EST abundance, many genes showing apparent differential expression between these conditions were identified. Rare instances of alternative splicing and uses of the non-standard amino acid selenocysteine were also identified.ConclusionWe report here significant progress in genome closure and reannotation of Tetrahymena thermophila. Our experience to date suggests that complete closure of the MAC genome is attainable. Using the new EST evidence, automated and manual curation has resulted in substantial improvements to the over 24,000 gene models, which will be valuable to researchers studying this model organism as well as for comparative genomics purposes.


Trends in Genetics | 2001

Paramecium genome survey : a pilot project

Philippe Dessen; Marek Zagulski; Robert Gromadka; Helmut Plattner; Roland Kissmehl; Eric Meyer; Mireille Bétermier; Joachim E. Schultz; Jürgen U. Linder; Ronald E. Pearlman; Ching Kung; Jim Forney; Birgit H. Satir; Judith Van Houten; Anne Marie Keller; Marine Froissard; Linda Sperling; Jean Cohen

A consortium of laboratories undertook a pilot sequencing project to gain insight into the genome of Paramecium. Plasmid-end sequencing of DNA fragments from the somatic nucleus together with similarity searches identified 722 potential protein-coding genes. High gene density and uniform small intron size make random sequencing of somatic chromosomes a cost-effective strategy for gene discovery in this organism.


Molecular and Cellular Biology | 1981

Two separate regions of the extrachromosomal ribosomal deoxyribonucleic acid of Tetrahymena thermophila enable autonomous replication of plasmids in Saccharomyces cerevisiae.

Gyorgy B. Kiss; Anthony A. Amin; Ronald E. Pearlman

Plasmids containing the nontranscribed central and terminal, but not the coding, regions of the extrachromosomal ribosomal deoxyribonucleic acid (rDNA) of Tetrahymena thermophila are capable of autonomous replication in Saccharomyces cerevisiae. These plasmids transform S. cerevisiae at high frequency; transformants are unstable in the absence of selection, and plasmids identical to those used for transformation were isolated from the transformed yeast cells. One plasmid contains a 1.85-kilobase Tetrahymena DNA fragment which includes the origin of bidirectional replication of the extrachromosomal rDNA. The other region of Tetrahymena rDNA allowing autonomous replication of plasmids in S. cerevisiae is a 650-base pair, adenine plus thymine-rich segment from the rDNA terminus. Neither of these Tetrahymena fragments shares obvious sequence homology with the origin of replication of the S. cerevisiae 2-microns circle plasmid or with ars1, an S. cerevisiae chromosomal replicator.


Current Topics in Developmental Biology | 1997

7 Chromosome Cores and Chromatin at Meiotic Prophase

Peter B. Moens; Ronald E. Pearlman; Henry H.Q. Heng

We review the synaptonemal complex. SC, of the synapsed homologous chromosomes at meiotic prophase in insects and mammals in terms of its formation, and the association of specific chromatin elements with the synaptonemal complexes. The focus is: (1) The SC as visualized with a variety of techniques; (2) The Nature of the chromatin loops where they are associated with the SCs—the bases of the loops may be instrumental in recombinant events judging from the presence of Rad51 protein and late recombination nodules at the SCs: (3) Differences in DNA content of similarly sized loops; (4) Requirements for chromatin attachment to the chromosome cores, requirements that are apparently lacking in foreign DNA inserts; (5) Regulation of loop size by the position along the chromosome: (6) The structural correlates of recombination at the SCs—these comments are based on studies of SC structure, DNA-core protein associations, fluorescent in situ hybridization to visualize specific DNA segments, and fluorescent immunocytology to visualize the chromosome core proteins. Copyright

Collaboration


Dive into the Ronald E. Pearlman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge