Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald J. Krieser is active.

Publication


Featured researches published by Ronald J. Krieser.


Cell Death & Differentiation | 2002

Deoxyribonuclease IIα is required during the phagocytic phase of apoptosis and its loss causes perinatal lethality

Ronald J. Krieser; Kyle S. MacLea; D. S. Longnecker; J. L. Fields; S. Fiering; Alan Eastman

Deoxyribonuclease IIα (DNase IIα) is one of many endonucleases implicated in DNA digestion during apoptosis. We produced mice with targeted disruption of DNase IIα and defined its role in apoptosis. Mice deleted for DNase IIα die at birth with many tissues exhibiting large DNA-containing bodies that result from engulfed but undigested cell corpses. These DNA-containing bodies are pronounced in the liver where fetal definitive erythropoiesis occurs and extruded nuclei are degraded. They are found between the digits, where apoptosis occurs, and in many other regions of the embryo. Defects in the diaphragm appear to cause death of the mice due to asphyxiation. The DNA in these bodies contains 3′-hydroxyl ends and therefore stain positive in the TUNEL assay. In addition, numerous unengulfed TUNEL-positive cells are observed throughout the embryo. Apoptotic cells are normally cleared rapidly from a tissue; hence the persistence of the DNA-containing bodies and TUNEL-positive cells identifies sites where apoptosis occurs during development. These results demonstrate that DNase IIα is not required for the generation of the characterisitic DNA fragmentation that occurs during apoptosis but is required for degrading DNA of dying cells and this function is necessary for proper fetal development.


Journal of Biological Chemistry | 1998

The Cloning and Expression of Human Deoxyribonuclease II A POSSIBLE ROLE IN APOPTOSIS

Ronald J. Krieser; Alan Eastman

We have previously implicated deoxyribonuclease II (DNase II) as an endonuclease responsible for DNA digestion during apoptosis. The full-length human cDNA has now been cloned. The cDNA contains an open reading frame of 1078 bases coding for a 40-kDa protein. This protein is 10 kDa larger than commercially supplied enzyme, which has been proteolytically cleaved at an internal aspartate residue. The gene is located at chromosome 19p13.2, and has no significant homology to other human proteins, but has >30% identity to three predicted genes in Caenorhabditis elegans. To determine whether overexpression of DNase II induces apoptosis in Chinese hamster ovary cells, the cDNA was cotransfected with a plasmid encoding green fluorescent protein. Within 24 h, a significant proportion of green fluorescent protein-positive cells contained condensed chromatin, whereas vector-only controls remained viable. Considering that DNase II is normally active only at low pH, it was surprising that transfection induced chromatin condensation. To confirm that transfection was not activating another endonuclease, cells were incubated with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)-fluoromethylketone; this failed to inhibit chromatin condensation induced by DNase II. These results demonstrate that DNase II acts downstream of caspase activation and that it may be activated by an as yet unknown mechanism to induce DNA digestion during apoptosis.


Cell Death & Differentiation | 1999

Cleavage and nuclear translocation of the caspase 3 substrate Rho GDP-dissociation inhibitor, D4-GDI, during apoptosis

Ronald J. Krieser; Alan Eastman

While investigating endonucleases potentially involved in apoptosis, an antisera was raised to bovine deoxyribonuclease II, but it recognized a smaller protein of 26 kDa protein in a variety of cell lines. The 26 kDa protein underwent proteolytic cleavage to 22 kDa concomitantly with DNA digestion in cells induced to undergo apoptosis. Sequencing of the 26 kDa protein identified it as the Rho GDP-dissociation inhibitor D4-GDI. Zinc, okadaic acid, calyculin A, cantharidin, and the caspase inhibitor z-VAD-fmk, all prevented the cleavage of D4-GDI, DNA digestion, and apoptosis. The 26 kDa protein resided in the cytoplasm of undamaged cells, whereas following cleavage, the 22 kDa form translocated to the nucleus. Human D4-GDI, and D4-GDI mutated at the caspase 1 or caspase 3 sites, were expressed in Chinese hamster ovary cells which show no detectable endogenous D4-GDI. Mutation at the caspase 3 site prevented D4-GDI cleavage but did not inhibit apoptosis induced by staurosporine. The cleavage of D4-GDI could lead to activation of Jun N-terminal kinase which has been implicated as an upstream regulator of apoptosis in some systems. However, the results show that the cleavage of D4-GDI and translocation to the nucleus do not impact on the demise of the cell.


Current Opinion in Cell Biology | 2002

Engulfment mechanism of apoptotic cells

Ronald J. Krieser; Kristin White

Apoptotic cells are engulfed and removed by phagocytes. This ensures proper development of the organism and can modulate immune responses. Recent studies have examined molecules on apoptotic cells, such as phosphatidylserine, which may signal for engulfment through multiple receptors. Apoptotic recognition mechanisms may vary with the apoptotic and engulfing cell type, and even with the age of the corpse.


Development | 2007

The Drosophila homolog of the putative phosphatidylserine receptor functions to inhibit apoptosis

Ronald J. Krieser; Finola E. Moore; Douglas Dresnek; Brett Pellock; Reena Patel; Albert Huang; Carrie Baker Brachmann; Kristin White

Exposure of phosphatidylserine is a conserved feature of apoptotic cells and is thought to act as a signal for engulfment of the cell corpse. A putative receptor for phosphatidylserine (PSR) was previously identified in mammalian systems. This receptor is proposed to function in engulfment of apoptotic cells, although gene ablation of PSR has resulted in a variety of phenotypes. We examined the role of the predicted Drosophila homolog of PSR (dPSR) in apoptotic cell engulfment and found no obvious role for dPSR in apoptotic cell engulfment by phagocytes in the embryo. In addition, dPSR is localized to the nucleus, inconsistent with a role in apoptotic cell recognition. However, we were surprised to find that overexpression of dPSR protects from apoptosis, while loss of dPSR enhances apoptosis in the developing eye. The increased apoptosis is mediated by the head involution defective (Wrinkled) gene product. In addition, our data suggest that dPSR acts through the c-Jun-NH2 terminal kinase pathway to alter the sensitivity to cell death.


Gene | 2001

The cloning, genomic structure, localization, and expression of human deoxyribonuclease IIβ ☆

Ronald J. Krieser; Kyle S. MacLea; Jonathan P. Park; Alan Eastman

Acidic endonuclease activity is present in all cells in the body and much of this can be attributed to the previously cloned and ubiquitously expressed deoxyribonuclease II (DNase II). Database analysis revealed the existence of expressed sequence tags and genomic segments coding for a protein with considerable homology to DNase II. This report describes the cloning of this cDNA, which we term deoxyribonuclease IIbeta (DNase IIbeta) and comparison of its expression to that of the originally cloned DNase II (now termed DNase IIalpha). The cDNA encodes a 357 amino acid protein. This protein exhibits extensive homology to DNase IIalpha including an amino-terminal signal peptide and a conserved active site, and has many of the regions of identity that are conserved in homologs in other mammals as well as C. elegans and Drosophila. The gene encoding DNase IIbeta has identical splice sites to DNase IIalpha. Human DNase IIbeta is highly expressed in the salivary gland, and at low levels in trachea, lung, prostate, lymph node, and testis, whereas DNase IIalpha is ubiquitously expressed in all tissues. The expression pattern of human DNase IIbeta suggests that it may function primarily as a secreted enzyme. Human saliva was found to contain DNase IIalpha, but after immunodepletion, considerable acid-active endonuclease remained which we presume is DNase IIbeta. We have localized the gene for human DNase IIbeta to chromosome 1p22.3 adjacent (and in opposing orientation) to the human uricase pseudogene. Interestingly, murine DNase IIbeta is highly expressed in the liver. Uricase is also highly expressed in mouse but not human liver and this may explain the difference in expression patterns between human and mouse DNase IIbeta.


Gene | 2003

A family history of deoxyribonuclease II: surprises from Trichinella spiralis and Burkholderia pseudomallei

Kyle S. MacLea; Ronald J. Krieser; Alan Eastman

Deoxyribonuclease IIalpha (DNase IIalpha) is an acidic endonuclease found in lysosomes and nuclei, and it is also secreted. Though its Caenorhabditis elegans homolog, NUC-1, is required for digesting DNA of apoptotic cell corpses and dietary DNA, it is not required for viability. However, DNase IIalpha is required in mice for correct development and viability, because undigested cell corpses lead to lesions throughout the body. Recently, we showed that, in contrast to previous reports, active DNase IIalpha consists of one contiguous polypeptide. To better analyze DNase II protein structure and determine residues important for activity, extensive database searches were conducted to find distantly related family members. We report 29 new partial or complete homologs from 21 species. Four homologs with differences at the purported active site histidine residue were detected in the parasitic nematodes Trichinella spiralis and Trichinella pseudospiralis. When these mutations were reconstructed in human DNase IIalpha, the expressed proteins were inactive. DNase II homologs were also identified in non-metazoan species. In particular, the slime-mold Dictyostelium, the protozoan Trichomonas vaginalis, and the bacterium Burkholderia pseudomallei all contain sequences with significant similarity and identity to previously cloned DNase II family members. We report an analysis of their sequences and implications for DNase II protein structure and evolution.


Cell Death & Differentiation | 2011

Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death.

Michael J. Thomenius; Christopher D. Freel; Sarah R. Horn; Ronald J. Krieser; Eltyeb Abdelwahid; R Cannon; S Balasundaram; Kristin White; Sally Kornbluth

In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die.


Apoptosis | 2009

Inside an enigma: do mitochondria contribute to cell death in Drosophila?

Ronald J. Krieser; Kristin White

Mitochondria have been shown to play an important role in cell death in mammalian cells. However, the importance of mitochondria in Drosophila apoptosis is still under investigation. Many proteins involved in the regulation of apoptosis in mammals act at mitochondria or are released from mitochondria, resulting in caspase activation. In addition, these organelles undergo significant ultrastructural changes during apoptosis. This review highlights similarities and differences in the roles of mitochondria and mitochondrial factors in apoptosis between Drosophila and mammals. In Drosophila, many key regulators of apoptosis also appear to localize to this organelle, which also undergoes ultrastructural changes during apoptosis. Although many of the proteins important for the control of apoptosis in mammalian cells are conserved in Drosophila, the role that mitochondria play in apoptosis in this model system remains an area of controversy and active research.


Developmental Cell | 2007

Mitochondrial Disruption in Drosophila Apoptosis

Eltyeb Abdelwahid; Takakazu Yokokura; Ronald J. Krieser; Sujatha Balasundaram; William H. Fowle; Kristin White

Collaboration


Dive into the Ronald J. Krieser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge