Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronaldo Vibart is active.

Publication


Featured researches published by Ronaldo Vibart.


Science of The Total Environment | 2014

Modelling pastoral farm systems--scaling from farm to region.

Iris Vogeler; Ronaldo Vibart; A. D. Mackay; Samuel Dennis; Vicki Burggraaf; Josef Beautrais

Farm system and nutrient budget models are increasingly being used to inform and evaluate policy options on the impacts of land use change on regional environmental and economic performance. In this study, the common approach of up-scaling representative farm systems to a regional scale, with a limited input of resource information, was compared with a new approach that links a geospatial land resource information data base (NZLRI, Agribase™) that includes independent estimates of the productive capacity of land parcels, with individual farm-scale simulation (Farmax® Pro and Farmax® Dairy Pro) and nutrient budgeting models (Overseer®). The Southland region of New Zealand, which is currently undergoing enormous land use change, was used as a case study. Model outputs from the new approach showed increased profit of about 75% for the region if the current land area under dairying increases from 16% to 45%, with the shift to dairy constrained to high pasture production classes only. Environmental impacts associated with the change were substantial, with nitrate leaching estimated to increase by 35% and greenhouse gas emissions by 25%. Up-scaling of representative farm systems to the regional scale with limited input of resource information predicted lower potential regional profit and higher N leaching from dairy conversion. The new approach provides a farm scale framework that could easily be extended to include different systems, different levels of farming performance and the use of mitigation technologies.


Journal of Animal Science | 2015

A modified version of the Molly rumen model to quantify methane emissions from sheep1

Indrakumar Vetharaniam; Ronaldo Vibart; M.D. Hanigan; Peter H. Janssen; M. H. Tavendale; D. Pacheco

We modified the rumen submodel of the Molly dairy cow model to simulate the rumen of a sheep and predict its methane emissions. We introduced a rumen hydrogen (H2) pool as a dynamic variable, which (together with the microbial pool in Molly) was used to predict methane production, to facilitate future consideration of thermodynamic control of methanogenesis. The new model corrected a misspecification of the equation of microbial H2 utilization in Molly95, which could potentially give rise to unrealistic predictions under conditions of low intake rates. The new model included a function to correct biases in the estimation of net H2 production based on the default stoichiometric relationships in Molly95, with this function specified in terms of level of intake. Model parameters for H2 and methane production were fitted to experimental data that included fresh temperate forages offered to sheep at a wide range of intake levels and then tested against independent data. The new model provided reasonable estimates relative to the calibration data set, but a different parameterization was needed to improve its predicted ability relative to the validation data set. Our results indicate that, although feedback inhibition on H2 production and methanogen activity increased with feeding level, other feedback effects that vary with diet composition need to be considered in future work on modeling rumen digestion in Molly.


Animal Production Science | 2017

Balancing water-quality threats from nutrients and production in Australian and New Zealand dairy farms under low profit margins

R. W. McDowell; R. M. Monaghan; W. Dougherty; C. J. P. Gourley; Ronaldo Vibart; M. Shepherd

The loss of nitrogen (N) and phosphorus (P) from dairy-farmed land can impair water quality. Efforts to curtail these losses in Australia and New Zealand (Australasia) have involved a mixture of voluntary and regulatory approaches. In the present paper, we summarise the losses of N and P from Australasian dairy farms, examine the policy drivers used for mitigating losses and evaluate the effectiveness of contrasting approaches to implementing mitigations. Median losses for N and P were 27 and 1.6 kg/ha.year respectively, with a wide range of variation (3–153 kg N/ha.year and 0.3–69 kg P/ha.year) caused by a complex array of climate, soil types, flow paths, nutrient surpluses and land management factors. This complexity, coupled with the variable implementation of measures to mitigate losses, means that many voluntary programs to decrease losses have had uncertain or limited success. Although there is little or no formal regulation in Australia, regulation exists in New Zealand that requires regional authorities to implement the best strategy to improve water quality according to regional-specific characteristics. In testing a generalised approach to mitigation (priority given to those that are easy to implement) in four regions in New Zealand, we found that P could be mitigated quite cheaply, but N reductions required more measures, some of which are costly. Conversely, prioritising on the basis of mitigation cost-effectiveness for a specific nutrient will lead to more rapid reductions in losses of the target nutrient, but with fewer co-benefits for the non-target nutrient or other water pollutants, such as faecal microorganisms and sediment. This information will assist farmers in deciding how to meet a catchment target at least cost.


Science of The Total Environment | 2016

Effect of inter-annual variability in pasture growth and irrigation response on farm productivity and profitability based on biophysical and farm systems modelling.

Iris Vogeler; A. D. Mackay; Ronaldo Vibart; John Rendel; Josef Beautrais; Samuel Dennis

Farm system and nutrient budget models are increasingly being used in analysis to inform on farm decision making and evaluate land use policy options at regional scales. These analyses are generally based on the use of average annual pasture yields. In New Zealand (NZ), like in many countries, there is considerable inter-annual variation in pasture growth rates, due to climate. In this study a modelling approach was used to (i) include inter-annual variability as an integral part of the analysis and (ii) test the approach in an economic analysis of irrigation in a case study within the Hawkes Bay Region of New Zealand. The Agricultural Production Systems Simulator (APSIM) was used to generate pasture dry matter yields (DMY) for 20 different years and under both dryland and irrigation. The generated DMY were linked to outputs from farm-scale modelling for both Sheep and Beef Systems (Farmaxx Pro) and Dairy Systems (Farmax® Dairy Pro) to calculate farm production over 20 different years. Variation in DMY and associated livestock production due to inter-annual variation in climate was large, with a coefficient of variations up to 20%. Irrigation decreased this inter-annual variation. On average irrigation, with unlimited available water, increased income by


Animal Production Science | 2016

A review of whole farm-system analysis in evaluating greenhouse-gas mitigation strategies from livestock production systems

Rp Rawnsley; Robyn Dynes; Km Christie; Mt Harrison; Natalie Doran-Browne; Ronaldo Vibart; R. J. Eckard

831 to 1195/ha, but when irrigation was limited to 250mm/ha/year income only increased by


Journal of Animal Science | 2018

Evaluation of a sheep rumen model with fresh forages of diverse chemical composition1

Indrakumar Vetharaniam; Ronaldo Vibart; David Pacheco

525 to 883/ha. Using pasture responses in individual years to capturing the inter-annual variation, rather than the pasture response averaged over 20years resulted in lower financial benefits. In the case study income from irrigation based on an average year were 10 to >20% higher compared with those obtained from individual years.


Journal of Dairy Science | 2017

Milk production and composition, nitrogen utilization, and grazing behavior of late-lactation dairy cows as affected by time of allocation of a fresh strip of pasture

Ronaldo Vibart; Michael H. Tavendale; Don Otter; B.H. Schwendel; K. Lowe; P. Gregorini; D. Pacheco

Recognition is increasingly given to the need of improving agricultural production and efficiency to meet growing global food demand, while minimising environmental impacts. Livestock forms an important component of global food production and is a significant contributor to anthropogenic greenhouse-gas (GHG) emissions. As such, livestock production systems (LPS) are coming under increasing pressure to lower their emissions. In developed countries, LPS have been gradually reducing their emissions per unit of product (emissions intensity; EI) over time through improvements in production efficiency. However, the global challenge of reducing net emissions (NE) from livestock requires that the rate of decline in EI surpasses the productivity increases required to satisfy global food demand. Mechanistic and dynamic whole farm-system models can be used to estimate farm-gate GHG emissions and to quantify the likely changes in farm NE, EI, farm productivity and farm profitability as a result of applying various mitigation strategies. Such models are also used to understand the complex interactions at the farm-system level and to account for how component mitigation strategies perform within the complexity of these interactions, which is often overlooked when GHG mitigation research is performed only at the component level. The results of such analyses can be used in extension activities and to encourage adoption, increase awareness and in assisting policy makers. The present paper reviews how whole farm-system modelling has been used to assess GHG mitigation strategies, and the importance of understanding metrics and allocation approaches when assessing GHG emissions from LPS.


Animal Production Science | 2017

A farm-scale framework to assess potential farm- and regional-scale implications of removing palm-kernel expeller as a supplementary feed for dairy cows

Ronaldo Vibart; A. D. Mackay; Andrew Wall; Iris Vogeler; Josef Beautrais; Dawn Dalley

The sheep rumen submodel MollyRum14 was evaluated on its methane and VFA predictions against data from respiration-chamber trials conducted with sheep fed perennial ryegrass, white clover, chicory, forage rape, turnip (leafy and bulb varieties), swedes, kale, or forage radish. We assessed the models response to substrate degradation rate (settings that affect the rate of cellulose and hemicellulose digestion) and to fermentation stoichiometry (settings that alter nonglucogenic to glucogenic short-chain fatty acid ratios). Model predictions were evaluated against data for methane production (pCH4: g/d), methane yield (yCH4: g/kg DMI), and acetate to propionate ratio (A:P). The predictive ability of the model for both pCH4 and yCH4 was superior for perennial ryegrass than for other forages. Except for swedes and chicory, predictions for yCH4 were correctly ranked across the forages evaluated. Except for forage rape, robust predictions were obtained for all forages using fast degradation kinetics and a predominantly acetogenic stoichiometry. Model predictions for forage rape were enhanced using slow degradation kinetics and a predominantly propionic stoichiometry. These results indicate that MollyRum14 is suitable to predict methane emissions from sheep fed a variety of fresh forages including annual fodder crops. However, a clear understanding of degradation rates and stoichiometries is needed to enhance the utility of the model as a predictive tool. This would allow continuous adjustment of digestion rates and stoichiometries to be potentially tailored to individual forage species.


Journal of Environmental Management | 2015

A regional assessment of the cost and effectiveness of mitigation measures for reducing nutrient losses to water and greenhouse gas emissions to air from pastoral farms

Ronaldo Vibart; Iris Vogeler; Samuel Dennis; William Kaye-Blake; R. M. Monaghan; Vicki Burggraaf; Josef Beautrais; A. D. Mackay

Eighty late-lactation dairy cows were used to examine the effects of allocating a new pasture strip of a sward based on ryegrass (Lolium perenne L.) in the morning (a.m.; ∼0730 h) or in the afternoon (p.m.; ∼1530 h) on milk production and composition, nitrogen (N) utilization, and grazing behavior. Cows grazed the same pasture strips for 24 h and were offered the same daily herbage allowance. Herbage composition differed among treatments; p.m. herbage had greater dry matter (DM; 22.7 vs. 19.9%), organic matter (OM; 89.5 vs. 88.9%), and water-soluble carbohydrate (10.9 vs. 7.6%) concentrations and lesser crude protein (20.5 vs. 22.2%) and neutral detergent fiber (48.8 vs. 50.4%) concentrations compared with a.m. herbage. Total fatty acids (FA), α-linolenic acid, and polyunsaturated FA (PUFA) were greater in a.m. herbage, whereas monounsaturated FA were greater in p.m. herbage. Estimates of herbage DM intake did not differ among treatments. Daily milk yields and milk fat and milk protein concentrations were similar among treatments, whereas milk fat (684 vs. 627 g/cow), milk protein (545 vs. 505 g/cow), and milk solids (milk fat + milk protein) yields (1,228 vs. 1,132 g/cow) tended to be greater for cows on p.m. herbage. Rumenic acid and total PUFA in milk were greater for cows on a.m. herbage, whereas oleic acid was greater for cows on p.m. herbage. Estimates of urinary N excretion (g/d) did not differ among treatments, but urinary N concentrations were greater for cows on a.m. herbage (5.85 vs. 5.36 g/L). Initial herbage mass (HM) available (kg of DM/ha) and instantaneous HM disappearance rates (kg of DM/ha and kg of DM/h) did not differ, but fractional disappearance rates (0.56 vs. 0.74 per hour for a.m. vs. p.m., respectively) differed. Under the current conditions, timing of pasture strip allocation altered the herbage nutrient supply to cows; allocating a fresh strip of pasture later in the day resulted in moderate increases in milk and milk solids yields in late-lactation dairy cows. Conversely, a greater concentration of precursor FA in a.m. herbage resulted in a greater concentration of beneficial FA in milk, compared with cows on p.m. herbage.


Agronomy Journal | 2016

Simple versus Diverse Temperate Pastures: Aspects of Soil–Plant–Animal Interrelationships Central to Nitrogen Leaching Losses

Ronaldo Vibart; Iris Vogeler; M. B. Dodd; John Koolaard

Farm-scale models were integrated with spatially discrete estimates of pasture production to examine the potential farm and regional implications of removing palm-kernel expeller (PKE) as a supplementary feed from dairy farms in Southland, New Zealand. The following two farm-production systems representing the majority of dairy farms in the region were modelled: a System 3 farm (D3; mid-intensification, with 10–20% of imported feed) and a System 4 farm (D4; mid- to high intensification, with 20–30% of imported feed). Within each system, the impact of the following four PKE options was explored: (1) a control with PKE (Baseline); (2) no PKE, with fewer cows producing the same amount of milk per cow as in Baseline; (3) no PKE, with the same number of cows producing less milk per cow than in Baseline; and (4) PKE replaced with barley grain. Barley grain provides for similar flexibility (timing of purchase and feeding), and can be sourced locally. Faced with the need to remove PKE as a dietary ingredient, farmers would benefit from adopting the second PKE option (no PKE, with fewer cows producing the same amount of milk per cow as in Baseline); farm-operating profits were reduced by only 3% (compared with 30% of System 4 farms adopting the third PKE option, i.e. no PKE, with the same number of cows producing less milk per cow than in Baseline) relative to the Baseline farms. The narrow range of mean annual nitrate-nitrogen (nitrate-N) leaching losses (estimates ranged from 30 to 33 kg N/ha) reflects similar estimates of N intake and N excreted in urine across the modelled options. Substantial amounts of barley grain would need to be transported into the region or produced locally to replace PKE.

Collaboration


Dive into the Ronaldo Vibart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Km Christie

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Mt Harrison

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

R. J. Eckard

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Rp Rawnsley

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge