Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rong-Fang Gu is active.

Publication


Featured researches published by Rong-Fang Gu.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor.

David E. Ehmann; Haris Jahić; Philip L. Ross; Rong-Fang Gu; Jun Hu; Gunther Kern; Grant K. Walkup; Stewart L. Fisher

Avibactam is a β-lactamase inhibitor that is in clinical development, combined with β-lactam partners, for the treatment of bacterial infections comprising Gram-negative organisms. Avibactam is a structural class of inhibitor that does not contain a β-lactam core but maintains the capacity to covalently acylate its β-lactamase targets. Using the TEM-1 enzyme, we characterized avibactam inhibition by measuring the on-rate for acylation and the off-rate for deacylation. The deacylation off-rate was 0.045 min−1, which allowed investigation of the deacylation route from TEM-1. Using NMR and MS, we showed that deacylation proceeds through regeneration of intact avibactam and not hydrolysis. Other than TEM-1, four additional clinically relevant β-lactamases were shown to release intact avibactam after being acylated. We showed that avibactam is a covalent, slowly reversible inhibitor, which is a unique mechanism of inhibition among β-lactamase inhibitors.


Journal of Biological Chemistry | 2013

Kinetics of Avibactam Inhibition against Class A, C, and D β-Lactamases

David E. Ehmann; Haris Jahić; Philip L. Ross; Rong-Fang Gu; Jun Hu; Thomas F. Durand-Réville; Sushmita D. Lahiri; Jason Thresher; Stephania Livchak; Ning Gao; Tiffany Palmer; Grant K. Walkup; Stewart L. Fisher

Background: Avibactam is a β-lactamase inhibitor with a broad spectrum of activity. Results: Kinetic parameters of inhibition as well as acyl enzyme stability are reported against six clinically relevant enzymes. Conclusion: Inhibition efficiency is highest against class A, then class C, and then class D. Significance: These base-line inhibition values across enzyme classes provide the foundation for future structural and mechanistic enzymology experiments. Avibactam is a non-β-lactam β-lactamase inhibitor with a spectrum of activity that includes β-lactamase enzymes of classes A, C, and selected D examples. In this work acylation and deacylation rates were measured against the clinically important enzymes CTX-M-15, KPC-2, Enterobacter cloacae AmpC, Pseudomonas aeruginosa AmpC, OXA-10, and OXA-48. The efficiency of acylation (k2/Ki) varied across the enzyme spectrum, from 1.1 × 101 m−1s−1 for OXA-10 to 1.0 × 105 for CTX-M-15. Inhibition of OXA-10 was shown to follow the covalent reversible mechanism, and the acylated OXA-10 displayed the longest residence time for deacylation, with a half-life of greater than 5 days. Across multiple enzymes, acyl enzyme stability was assessed by mass spectrometry. These inhibited enzyme forms were stable to rearrangement or hydrolysis, with the exception of KPC-2. KPC-2 displayed a slow hydrolytic route that involved fragmentation of the acyl-avibactam complex. The identity of released degradation products was investigated, and a possible mechanism for the slow deacylation from KPC-2 is proposed.


Antimicrobial Agents and Chemotherapy | 2015

Molecular Mechanisms of Sulbactam Antibacterial Activity and Resistance Determinants in Acinetobacter baumannii

William F. Penwell; Adam B. Shapiro; Robert A. Giacobbe; Rong-Fang Gu; Ning Gao; Jason Thresher; Robert E. McLaughlin; Michael D. Huband; Boudewijn Dejonge; David E. Ehmann; Alita A. Miller

ABSTRACT Sulbactam is a class A β-lactamase inhibitor with intrinsic whole-cell activity against certain bacterial species, including Acinetobacter baumannii. The clinical use of sulbactam for A. baumannii infections is of interest due to increasing multidrug resistance in this pathogen. However, the molecular drivers of its antibacterial activity and resistance determinants have yet to be precisely defined. Here we show that the antibacterial activities of sulbactam vary widely across contemporary A. baumannii clinical isolates and are mediated through inhibition of the penicillin-binding proteins (PBPs) PBP1 and PBP3, with very low frequency of resistance; the rare pbp3 mutants with high levels of resistance to sulbactam are attenuated in fitness. These results support further investigation of the potential clinical utility of sulbactam.


Antimicrobial Agents and Chemotherapy | 2013

Discovery of inhibitors of 4'-phosphopantetheine adenylyltransferase (PPAT) to validate PPAT as a target for antibacterial therapy.

Boudewijn L. M. de Jonge; Grant K. Walkup; Sushmita D. Lahiri; Hoan Huynh; Georg Neckermann; Luke Utley; Tory Nash; Jesse Brock; Maryann San Martin; Amy Kutschke; Valerie A. Laganas; Laurel Hajec; Rong-Fang Gu; Haihong Ni; Brendan Chen; Kim Marie Hutchings; Elise Holt; David C. McKinney; Ning Gao; Stephania Livchak; Jason Thresher

ABSTRACT Inhibitors of 4′-phosphopantetheine adenylyltransferase (PPAT) were identified through high-throughput screening of the AstraZeneca compound library. One series, cycloalkyl pyrimidines, showed inhibition of PPAT isozymes from several species, with the most potent inhibition of enzymes from Gram-positive species. Mode-of-inhibition studies with Streptococcus pneumoniae and Staphylococcus aureus PPAT demonstrated representatives of this series to be reversible inhibitors competitive with phosphopantetheine and uncompetitive with ATP, binding to the enzyme-ATP complex. The potency of this series was optimized using structure-based design, and inhibition of cell growth of Gram-positive species was achieved. Mode-of-action studies, using generation of resistant mutants with targeted sequencing as well as constructs that overexpress PPAT, demonstrated that growth suppression was due to inhibition of PPAT. An effect on bacterial burden was demonstrated in mouse lung and thigh infection models, but further optimization of dosing requirements and compound properties is needed before these compounds can be considered for progress into clinical development. These studies validated PPAT as a novel target for antibacterial therapy.


Analytical Biochemistry | 2013

Continuous fluorescence anisotropy-based assay of BOCILLIN FL penicillin reaction with penicillin binding protein 3

Adam B. Shapiro; Rong-Fang Gu; Ning Gao; Stephania Livchak; Jason Thresher

We report a simple, rapid, and reproducible fluorescence anisotropy-based method for measuring rate constants for acylation and deacylation of soluble penicillin binding protein (PBP) constructs by compounds in microtiter plates by means of competition with time-dependent acylation by BOCILLIN FL. The method is demonstrated by measuring the acylation rate constants of the PBP3 periplasmic domains from Pseudomonas aeruginosa and Acinetobacter baumannii by BOCILLIN FL, aztreonam, meropenem, and ceftazidime. The new method requires very little protein and can be completed in approximately 1h per compound. A set of BOCILLIN FL acylation progress curves collected over a range of competitor concentrations is fit globally to a kinetic model by numerical integration. First-order deacylation rate constants could also be measured, as demonstrated with a catalytically impaired mutant OXA-10 β-lactamase.


Analytical Biochemistry | 2014

Fluorescence anisotropy-based measurement of Pseudomonas aeruginosa penicillin-binding protein 2 transpeptidase inhibitor acylation rate constants

Adam B. Shapiro; Ning Gao; Rong-Fang Gu; Jason Thresher

High-molecular-weight penicillin-binding proteins (PBPs) are essential integral membrane proteins of the bacterial cytoplasmic membrane responsible for biosynthesis of peptidoglycan. They are the targets of antibacterial β-lactam drugs, including penicillins, cephalosporins, and carbapenems. β-Lactams covalently acylate the active sites of the PBP transpeptidase domains. Because β-lactams are time-dependent inhibitors, quantitative assessment of the inhibitory activity of these compounds ideally involves measurement of their second-order acylation rate constants. We previously described a fluorescence anisotropy-based assay to measure these rate constants for soluble constructs of PBP3 (Anal. Biochem. 439 (2013) 37-43). Here we report the expression and purification of a soluble construct of Pseudomonas aeruginosa PBP2 as a fusion protein with NusA. This soluble PBP2 was used to measure second-order acylation rate constants with the fluorescence anisotropy assay. Measurements were obtained for mecillinam, which reacts specifically with PBP2, and for several carbapenems. The assay also revealed that PBP2 slowly hydrolyzed mecillinam and was used to measure the rate constant for this deacylation reaction.


ACS Infectious Diseases | 2016

Antibacterial FabH Inhibitors with Mode of Action Validated in Haemophilus influenzae by in Vitro Resistance Mutation Mapping.

David C. McKinney; Charles J. Eyermann; Rong-Fang Gu; Jun Hu; Steven L. Kazmirski; Sushmita D. Lahiri; Andrew R. McKenzie; Adam B. Shapiro; Gloria Anne Breault

Fatty acid biosynthesis is essential to bacterial growth in Gram-negative pathogens. Several small molecules identified through a combination of high-throughput and fragment screening were cocrystallized with FabH (β-ketoacyl-acyl carrier protein synthase III) from Escherichia coli and Streptococcus pneumoniae. Structure-based drug design was used to merge several scaffolds to provide a new class of inhibitors. After optimization for Gram-negative enzyme inhibitory potency, several compounds demonstrated antimicrobial activity against an efflux-negative strain of Haemophilus influenzae. Mutants resistant to these compounds had mutations in the FabH gene near the catalytic triad, validating FabH as a target for antimicrobial drug discovery.


Virology Journal | 2014

Quantitative investigation of the affinity of human respiratory syncytial virus phosphoprotein C-terminus binding to nucleocapsid protein

Adam B. Shapiro; Ning Gao; Nichole O’Connell; Jun Hu; Jason Thresher; Rong-Fang Gu; Ross Overman; Ian Hardern; Graham G Sproat

BackgroundThere are no approved small molecule drug therapies for human respiratory syncytial virus (hRSV), a cause of morbidity and mortality in at-risk newborns, the immunocompromised, and the elderly. We have investigated as a potential novel hRSV drug target the protein-protein interaction between the C-terminus of the viral phosphoprotein (P) and the viral nucleocapsid protein (N), components of the ribonucleoprotein complex that contains, replicates, and transcribes the viral RNA genome. Earlier work by others established that the 9 C-terminal residues of P are necessary and sufficient for binding to N.MethodsWe used a fluorescence anisotropy assay, surface plasmon resonance and 2-D NMR to quantify the affinities of peptides based on the C terminus of P for RNA-free, monomeric N-terminal-truncated N(13-391). We calculated the contributions to the free energies of binding of P to N(13-391) attributable to the C-terminal 11 residues, phosphorylation of the C-terminal 2 serine residues, the C-terminal Asp-Phe, and the phenyl ring of the C-terminal Phe.ResultsBinding studies confirmed the crucial role of the phosphorylated C-terminal peptide D(pS)DNDL(pS)LEDF for binding of P to RNA-free, monomeric N(13-391), contributing over 90% of the binding free energy at low ionic strength. The phenyl ring of the C-terminal Phe residue contributed an estimated -2.7 kcal/mole of the free energy of binding, the C-terminal Asp-Phe residues contributed -3.8 kcal/mole, the sequence DSDNDLSLE contributed -3.1 kcal/mole, and phosphorylation of the 2 Ser residues contributed -1.8 kcal/mole. Due to the high negative charge of the C-terminal peptide, the affinity of the P C-terminus for N(13-391) decreased as the ionic strength increased.ConclusionsThe results support the idea that the interaction of the C-terminal residues of P with N constitutes a protein-protein interaction hotspot that may be a suitable target for small-molecule drugs that inhibit viral genome replication and transcription.


Biochemical and Biophysical Research Communications | 2014

Dimerization of isolated Pseudomonas aeruginosa lipopolysaccharide transporter component LptA.

Adam B. Shapiro; Rong-Fang Gu; Ning Gao

LptA is a soluble periplasmic component of the lipopolysaccharide (LPS) transport system of Gram-negative bacteria that transports newly synthesized LPS from the inner membrane to the outer leaflet of the outer membrane. LptA links the inner membrane components (LptBFGC) to the outer membrane components (LptDE), but it is uncertain whether LptA is a freely moving LPS shuttle or part of a stable trans-periplasm structure. Escherichiacoli LptA forms highly polymerized head-to-tail oligomers in solution, but dimers in vivo. We studied the oligomerization of purified Pseudomonasaeruginosa LptA. Size-exclusion chromatography showed that P. aeruginosa LptA, unlike E. coli LptA, is a dimer over a wide range of concentrations. Chemical crosslinking with bis(sulfosuccinimidyl) suberate confirmed that dimers were the predominant species even at sub-micromolar LptA concentrations, which was unaffected by LPS binding. Mass spectrometry of crosslinked dimers showed that crosslinks occurred between the N-terminal α-amino group and either Lys-172 or Lys-173 near the C-terminus. These results support a hypothetical structure for the dimer of isolated P. aeruginosa LptA in which the N-terminus of one monomer is in close proximity to the C-terminus of the other, and the same surface of each monomer forms the interface between them, preventing further oligomerization.


ACS Chemical Biology | 2012

Structure guided understanding of NAD+ recognition in bacterial DNA ligases.

Sushmita D. Lahiri; Rong-Fang Gu; Ning Gao; Irene Karantzeni; Grant K. Walkup; Scott D. Mills

NAD(+)-dependent DNA ligases (LigA) are essential bacterial enzymes that catalyze phosphodiester bond formation during DNA replication and repair processes. Phosphodiester bond formation proceeds through a 3-step reaction mechanism. In the first step, the LigA adenylation domain interacts with NAD(+) to form a covalent enzyme-AMP complex. Although it is well established that the specificity for binding of NAD(+) resides within the adenylation domain, the precise recognition elements for the initial binding event remain unclear. We report here the structure of the adenylation domain from Haemophilus influenzae LigA. This structure is a first snapshot of a LigA-AMP intermediate with NAD(+) bound to domain 1a in its open conformation. The binding affinities of NAD(+) for adenylated and nonadenylated forms of the H. influenzae LigA adenylation domain were similar. The combined crystallographic and NAD(+)-binding data suggest that the initial recognition of NAD(+) is via the NMN binding region in domain 1a of LigA.

Collaboration


Dive into the Rong-Fang Gu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge