Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rong-Fong Shen is active.

Publication


Featured researches published by Rong-Fong Shen.


Journal of Biological Chemistry | 2006

The Mammalian Target of Rapamycin (mTOR) Pathway Regulates Mitochondrial Oxygen Consumption and Oxidative Capacity

Stefan M. Schieke; Darci Phillips; J. Philip McCoy; Angel Aponte; Rong-Fong Shen; Robert S. Balaban; Toren Finkel

Metabolic rate and the subsequent production of reactive oxygen species are thought to contribute to the rate of aging in a wide range of species. The target of rapamycin (TOR) is a well conserved serine/threonine kinase that regulates cell growth in response to nutrient status. Here we demonstrate that in mammalian cells the mammalian TOR (mTOR) pathway plays a significant role in determining both resting oxygen consumption and oxidative capacity. In particular, we demonstrate that the level of complex formation between mTOR and one of its known protein partners, raptor, correlated with overall mitochondrial activity. Disruption of this complex following treatment with the mTOR pharmacological inhibitor rapamycin lowered mitochondrial membrane potential, oxygen consumption, and ATP synthetic capacity. Subcellular fractionation revealed that mTOR as well as mTOR-raptor complexes can be purified in the mitochondrial fraction. Using two-dimensional difference gel electrophoresis, we further demonstrated that inhibiting mTOR with rapamycin resulted in a dramatic alteration in the mitochondrial phosphoproteome. RNA interference-mediated knockdown of TSC2, p70 S6 kinase (S6K1), raptor, or rictor demonstrates that mTOR regulates mitochondrial activity independently of its previously identified cellular targets. Finally we demonstrate that mTOR activity may play an important role in determining the relative balance between mitochondrial and non-mitochondrial sources of ATP generation. These results may provide insight into recent observations linking the TOR pathway to life span regulation of lower organisms.


Molecular & Cellular Proteomics | 2005

Large Scale Protein Identification in Intracellular Aquaporin-2 Vesicles from Renal Inner Medullary Collecting Duct

Maria Barile; Trairak Pisitkun; Ming-Jiun Yu; Chung-Lin Chou; Michael J. Verbalis; Rong-Fong Shen; Mark A. Knepper

Vasopressin acts on renal collecting duct cells to stimulate translocation of aquaporin-2 (AQP2)-containing membrane vesicles from throughout the cytoplasm to the apical region. The vesicles fuse with the plasma membrane to increase water permeability. To identify the intracellular membrane compartments that contain AQP2, we carried out LC-MS/MS-based proteomic analysis of immunoisolated AQP2-containing intracellular vesicles from rat inner medullary collecting duct. Immunogold electron microscopy and immunoblotting confirmed heavy AQP2 labeling of immunoisolated vesicles. Vesicle proteins were separated by SDS-PAGE followed by in-gel trypsin digestion in consecutive gel slices and identification by LC-MS/MS. Identification of Rab GTPases 4, 5, 18, and 21 (associated with early endosomes); Rab7 (late endosomes); and Rab11 and Rab25 (recycling endosomes) indicate that a substantial fraction of intracellular AQP2 is present in endosomal compartments. In addition, several endosome-associated SNARE proteins were identified including syntaxin-7, syntaxin-12, syntaxin-13, Vti1a, vesicle-associated membrane protein 2, and vesicle-associated membrane protein 3. Rab3 was not found, however, either by mass spectrometry or immunoblotting, suggesting a relative lack of AQP2 in secretory vesicles. Additionally, we identified markers of the trans-Golgi network, components of the exocyst complex, and several motor proteins including myosin 1C, non-muscle myosins IIA and IIB, myosin VI, and myosin IXB. Beyond this, identification of multiple endoplasmic reticulum-resident proteins and ribosomal proteins indicated that a substantial fraction of intracellular AQP2 is present in rough endoplasmic reticulum. These results show that AQP2-containing vesicles are heterogeneous and that intracellular AQP2 resides chiefly in endosomes, trans-Golgi network, and rough endoplasmic reticulum.


Traffic | 2009

Discovery of New Cargo Proteins that Enter Cells through Clathrin-Independent Endocytosis

Craig A. Eyster; Jason D. Higginson; Robert B. Huebner; Natalie Porat-Shliom; Roberto Weigert; Wells W. Wu; Rong-Fong Shen; Julie G. Donaldson

Clathrin‐independent endocytosis (CIE) allows internalization of plasma membrane proteins lacking clathrin‐targeting sequences, such as the major histocompatibility complex class I protein (MHCI), into cells. After internalization, vesicles containing MHCI fuse with transferrin‐containing endosomes generated from clathrin‐dependent endocytosis. In HeLa cells, MHCI is subsequently routed to late endosomes or recycled back out to the plasma membrane (PM) in distinctive tubular carriers. Arf6 is associated with endosomal membranes carrying CIE cargo and expression of an active form of Arf6 leads to the generation of vacuolar structures that trap CIE cargo immediately after endocytosis, blocking the convergence with transferrin‐containing endosomes. We isolated these trapped vacuolar structures and analyzed their protein composition by mass spectrometry. Here we identify and validate six new endogenous cargo proteins (CD44, CD55, CD98, CD147, Glut1, and ICAM1) that use CIE to enter cells. CD55 and Glut1 appear to closely parallel the trafficking of MHCI, merging with transferrin endosomes before entering the recycling tubules. In contrast, CD44, CD98, and CD147 appear to directly enter the recycling tubules and by‐pass the merge with EEA1‐positive, transferrin‐containing endosomes. This divergent itinerary suggests that sorting may occur along this CIE pathway. Furthermore, the identification of new cargo proteins will assist others studying CIE in different cell types and tissues.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1·GTP pathway

Shang-Yi Tsai; Teruo Hayashi; Brandon K. Harvey; Yun Wang; Wells W. Wu; Rong-Fong Shen; Yongqing Zhang; Kevin G. Becker; Barry J. Hoffer; Tsung-Ping Su

Sigma-1 receptors (Sig-1Rs) are endoplasmic reticulum (ER)-resident proteins known to be involved in learning and memory. Dendritic spines in hippocampal neurons play important roles in neuroplasticity and learning and memory. This study tested the hypothesis that Sig-1Rs might regulate denritic spine formation in hippocampal neurons and examined potential mechanisms therein. In rat hippocampal primary neurons, the knockdown of Sig-1Rs by siRNAs causes a deficit in the formation of dendritic spines that is unrelated to ER Ca2+ signaling or apoptosis, but correlates with the mitochondrial permeability transition and cytochrome c release, followed by caspase-3 activation, Tiam1 cleavage, and a reduction in Rac1·GTP. Sig-1R-knockdown neurons contain higher levels of free radicals when compared to control neurons. The activation of superoxide dismutase or the application of the hydroxyl-free radical scavenger N-acetyl cysteine (NAC) to the Sig-1R-knockdown neurons rescues dendritic spines and mitochondria from the deficits caused by Sig-1R siRNA. Further, the caspase-3-resistant TIAM1 construct C1199DN, a stable guanine exchange factor able to constitutively activate Rac1 in the form of Rac1·GTP, also reverses the siRNA-induced dendritic spine deficits. In addition, constitutively active Rac1·GTP reverses this deficit. These results implicate Sig-1Rs as endogenous regulators of hippopcampal dendritic spine formation and suggest a free radical-sensitive ER-mitochondrion-Rac1·GTP pathway in the regulation of dendritic spine formation in the hippocampus.


Biochemical and Biophysical Research Communications | 2009

Proteomic Profiling of Human Plasma Exosomes Identifies PPARγ as an Exosome-associated Protein

Christopher Looze; David Yui; Lester Leung; Matthew Ingham; Maryann Kaler; Xianglan Yao; Wells W. Wu; Rong-Fong Shen; Mathew P. Daniels; Stewart J. Levine

Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-gamma (PPARgamma), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPARgamma as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.


Molecular & Cellular Proteomics | 2006

LC-MS/MS Analysis of Apical and Basolateral Plasma Membranes of Rat Renal Collecting Duct Cells

Ming-Jiun Yu; Trairak Pisitkun; Guanghui Wang; Rong-Fong Shen; Mark A. Knepper

We used biotinylation and streptavidin affinity chromatography to label and enrich proteins from apical and basolateral membranes of rat kidney inner medullary collecting ducts (IMCDs) prior to LC-MS/MS protein identification. To enrich apical membrane proteins and bound peripheral membrane proteins, IMCDs were perfusion-labeled with primary amine-reactive biotinylation reagents at 2 °C using a double barreled pipette. The perfusion-biotinylated proteins and proteins bound to them were isolated with CaptAvidin-agarose beads, separated with SDS-PAGE, and sliced into continuous gel pieces for LC-MS/MS protein identification (LTQ, Thermo Electron Corp.). 17 integral and glycosylphosphatidylinositol (GPI)-linked membrane proteins and 44 non-integral membrane proteins were identified. Immunofluorescence confocal microscopy confirmed ACVRL1, H+/K+-ATPase α1, NHE2, and TauT expression in the IMCDs. Basement membrane and basolateral membrane proteins were biotinylated via incubation of IMCD suspensions with biotinylation reagents on ice. 23 integral and GPI-linked membrane proteins and 134 non-integral membrane proteins were identified. Analyses of non-integral membrane proteins preferentially identified in the perfusion-biotinylated and not in the incubation-biotinylated IMCDs revealed protein kinases, scaffold proteins, SNARE proteins, motor proteins, small GTP-binding proteins, and related proteins that may be involved in vasopressin-stimulated AQP2, UT-A1, and ENaC regulation. A World Wide Web-accessible database was constructed of 222 membrane proteins (integral and GPI-linked) from this study and prior studies.


Journal of Proteome Research | 2008

Enhancing Peptide Identification Confidence by Combining Search Methods

Gelio Alves; Wells W. Wu; Guanghui Wang; Rong-Fong Shen; Yi-Kuo Yu

Confident peptide identification is one of the most important components in mass-spectrometry-based proteomics. We propose a method to properly combine the results from different database search methods to enhance the accuracy of peptide identifications. The database search methods included in our analysis are SEQUEST (v27 rev12), ProbID (v1.0), InsPecT (v20060505), Mascot (v2.1), X! Tandem (v2007.07.01.2), OMSSA (v2.0) and RAId_DbS. Using two data sets, one collected in profile mode and one collected in centroid mode, we tested the search performance of all 21 combinations of two search methods as well as all 35 possible combinations of three search methods. The results obtained from our study suggest that properly combining search methods does improve retrieval accuracy. In addition to performance results, we also describe the theoretical framework which in principle allows one to combine many independent scoring methods including de novo sequencing and spectral library searches. The correlations among different methods are also investigated in terms of common true positives, common false positives, and a global analysis. We find that the average correlation strength, between any pairwise combination of the seven methods studied, is usually smaller than the associated standard error. This indicates only weak correlation may be present among different methods and validates our approach in combining the search results. The usefulness of our approach is further confirmed by showing that the average cumulative number of false positive peptides agrees reasonably well with the combined E-value. The data related to this study are freely available upon request.


Analytical Chemistry | 2009

Decoy Methods for Assessing False Positives and False Discovery Rates in Shotgun Proteomics

Guanghui Wang; Wells W. Wu; Zheng Zhang; Shyama Masilamani; Rong-Fong Shen

The potential of getting a significant number of false positives (FPs) in peptide-spectrum matches (PSMs) obtained by proteomic database search has been well-recognized. Among the attempts to assess FPs, the concomitant use of target and decoy databases is widely practiced. By adjusting filtering criteria, FPs and false discovery rate (FDR) can be controlled at a desired level. Although the target-decoy approach is gaining in popularity, subtle differences in decoy construction (e.g., reversing vs stochastic methods), rate calculation (e.g., total vs unique PSMs), or searching (separate vs composite) do exist among various implementations. In the present study, we evaluated the effects of these differences on FP and FDR estimations using a rat kidney protein sample and the SEQUEST search engine as an example. On the effects of decoy construction, we found that, when a single scoring filter (XCorr) was used, stochastic methods generated a higher estimation of FPs and FDR than sequence reversing methods, likely due to an increase in unique peptides. This higher estimation could largely be attenuated by creating decoy databases similar in effective size but not by a simple normalization with a unique-peptide coefficient. When multiple filters were applied, the differences seen between reversing and stochastic methods significantly diminished, suggesting multiple filterings reduce the dependency on how a decoy is constructed. For a fixed set of filtering criteria, FDR and FPs estimated by using unique PSMs were almost twice those using total PSMs. The higher estimation seemed to be dependent on data acquisition setup. As to the differences between performing separate or composite searches, in general, FDR estimated from the separate search was about three times that from the composite search. The degree of difference gradually decreased as the filtering criteria became more stringent. Paradoxically, the estimated true positives in separate search were higher when multiple filters were used. By analyzing a standard protein mixture, we demonstrated that the higher estimation of FDR and FPs in the separate search likely reflected an overestimation, which could be corrected with a simple merging procedure. Our study illustrates the relative merits of different implementations of the target-decoy strategy, which should be worth contemplating when large-scale proteomic biomarker discovery is to be attempted.


Journal of Biological Chemistry | 2005

Proteolysis of Macrophage Inflammatory Protein-1α Isoforms LD78β and LD78α by Neutrophil-derived Serine Proteases

Ok Hee Ryu; Sun Jin Choi; Erhan Firatli; Sung Won Choi; P. Suzanne Hart; Rong-Fong Shen; Guanghui Wang; Wells W. Wu; Thomas C. Hart

Macrophage inflammatory protein-1α (MIP-1α) is a chemokine that leads to leukocyte recruitment and activation at sites of infection. Controlling chemokine activity at sites of infection is important, since excess accumulation of leukocytes may contribute to localized tissue damage. Neutrophil-derived serine proteases modulate the bioactivity of chemokine and cytokine networks through proteolytic cleavage. Because MIP-1α is temporally expressed with neutrophils at sites of infection, we examined proteolysis of MIP-1α in vitro by the neutrophil-derived serine proteases: cathepsin G, elastase, and proteinase 3. Recombinant human MIP-1α isoforms LD78β and LD78α were expressed and purified, and the protease cleavage sites were analyzed by mass spectrometry and peptide sequencing. Chemotactic activities of parent and cleavage molecules were also compared. Both LD78β and LD78α were cleaved by neutrophil lysates at Thr16-Ser17, Phe24-Ile25, Tyr28-Phe29, and Thr31-Ser32. This degradation was inhibited by serine protease inhibitors phenylmethylsulfonyl fluoride and 4-(2-aminoethyl)-benzenesulfonyl fluoride. Incubation of the substrates with individual proteases revealed that cathepsin G preferentially cleaved at Phe24-Ile25 and Tyr28-Phe29, whereas elastase and proteinase 3 cleaved at Thr16-Ser17 and Thr31-Ser32. Proteolysis of LD78β resulted in loss of chemotactic activity. The role of these proteases in LD78β and LD78α degradation was confirmed by incubation with neutrophil lysates from Papillon-Lefèvre syndrome patients, demonstrating that the cell lysates containing inactivated serine proteases could not degrade LD78β and LD78α. These findings suggest that severe periodontal tissue destruction in Papillon-Lefèvre syndrome may be related to excess accumulation of LD78β and LD78α and dysregulation of the microbial-induced inflammatory response in the periodontium.


Journal of Biological Chemistry | 2005

Proteolysis of MIP-1α isoforms LD78β and LD78α by neutrophil-derived serine proteases

Ok Hee Ryu; Sun Jin Choi; Erhan Firatli; Sung Won Choi; P. Suzanne Hart; Rong-Fong Shen; Guanghui Wang; Wells W. Wu; Thomas C. Hart

Macrophage inflammatory protein-1α (MIP-1α) is a chemokine that leads to leukocyte recruitment and activation at sites of infection. Controlling chemokine activity at sites of infection is important, since excess accumulation of leukocytes may contribute to localized tissue damage. Neutrophil-derived serine proteases modulate the bioactivity of chemokine and cytokine networks through proteolytic cleavage. Because MIP-1α is temporally expressed with neutrophils at sites of infection, we examined proteolysis of MIP-1α in vitro by the neutrophil-derived serine proteases: cathepsin G, elastase, and proteinase 3. Recombinant human MIP-1α isoforms LD78β and LD78α were expressed and purified, and the protease cleavage sites were analyzed by mass spectrometry and peptide sequencing. Chemotactic activities of parent and cleavage molecules were also compared. Both LD78β and LD78α were cleaved by neutrophil lysates at Thr16-Ser17, Phe24-Ile25, Tyr28-Phe29, and Thr31-Ser32. This degradation was inhibited by serine protease inhibitors phenylmethylsulfonyl fluoride and 4-(2-aminoethyl)-benzenesulfonyl fluoride. Incubation of the substrates with individual proteases revealed that cathepsin G preferentially cleaved at Phe24-Ile25 and Tyr28-Phe29, whereas elastase and proteinase 3 cleaved at Thr16-Ser17 and Thr31-Ser32. Proteolysis of LD78β resulted in loss of chemotactic activity. The role of these proteases in LD78β and LD78α degradation was confirmed by incubation with neutrophil lysates from Papillon-Lefèvre syndrome patients, demonstrating that the cell lysates containing inactivated serine proteases could not degrade LD78β and LD78α. These findings suggest that severe periodontal tissue destruction in Papillon-Lefèvre syndrome may be related to excess accumulation of LD78β and LD78α and dysregulation of the microbial-induced inflammatory response in the periodontium.

Collaboration


Dive into the Rong-Fong Shen's collaboration.

Top Co-Authors

Avatar

Wells W. Wu

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Guanghui Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mark A. Knepper

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bronwen Martin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jason D. Hoffert

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yi-Kuo Yu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming-Jiun Yu

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge