Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rongchun Zhang is active.

Publication


Featured researches published by Rongchun Zhang.


Advanced Materials | 2013

Bio‐Inspired High‐Performance and Recyclable Cross‐Linked Polymers

Shen Yu; Rongchun Zhang; Qiang Wu; Tiehong Chen; Pingchuan Sun

Bio-inspired molecular design and synthesis of high-performance and recyclable cross-linked polymers is reported. Reversible cross-links between hard segments are incorporated into linear segmented polyurethane via Diels-Alder reaction between maleimide pendant group and furan cross-linker. The materials form hierarchical structure and exhibit excellent properties with high stiffness, strength and toughness, and can be easily thermally reshaped and re-mended.


Journal of Physical Chemistry B | 2014

Reversible Cross-Linking, Microdomain Structure, and Heterogeneous Dynamics in Thermally Reversible Cross-Linked Polyurethane as Revealed by Solid-State NMR

Rongchun Zhang; Shen Yu; Shengli Chen; Qiang Wu; Tiehong Chen; Pingchuan Sun; Baohui Li; Datong Ding

Polyurethane material is widely utilized in industry and daily life due to its versatile chemistry and relatively easy handling. Here, we focused on a novel thermally reversible cross-linked polyurethane with comprehensive remarkable mechanical properties as reported in our recent work (Adv. Mater. 2013, 25, 4912). The microphase-separated structure and heterogeneous segmental dynamics were well revealed by T2 relaxometry experiments, which was also first utilized to in situ monitor the reversible cross-linking associated with Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions. On the basis of T2 relaxometry results, we determined the actual temperature of the (R)DA reaction as well as the corresponding activation energies of the motion of soft segments. Besides, the roles of the temperature and cross-linker contents on the microdomain structure and dynamics are discussed in detail. It is found that the microphase separation is enhanced by the increase of temperature as well as the incorporation of cross-linkers. Also, the polyurethane samples are still thermal-stable even at a high temperature beyond the disassociation of the cross-linkages. Furthermore, Baum-Pines and three-pulse multiple-quantum NMR experiments are utilized to investigate the heterogeneous structures and dynamics of the mobile and rigid segments, respectively. Both the results obtained from the T2 relaxometry and multiple-quantum NMR experiments are in good agreement with the macroscopic mechanical properties of the polyurethane. Finally, it is also well demonstrated that proton T2 relaxometry combined with multiple-quantum NMR is a powerful method to study the heterogeneous structures and dynamics of a multiphase polymer system.


Journal of Physical Chemistry A | 2012

Accessing Structure and Dynamics of Mobile Phase in Organic Solids by Real-Time T1C Filter PISEMA NMR Spectroscopy

Rongchun Zhang; Yuzhu Chen; Tiehong Chen; Pingchuan Sun; Baohui Li; Datong Ding

The structure and dynamic behavior of mobile components play a significant role in determining properties of solid materials. Herein, we propose a novel real-time spectrum-editing method to extract signals of mobile components in organic solids on the basis of the polarization inversion spin exchange at magic angle (PISEMA) pulse sequence and the difference in (13)C T(1) values of rigid and mobile components. From the dipolar splitting spectrum sliced along the heteronuclear dipolar coupling dimension of the 2D spectrum, the structural and dynamic information can be obtained, such as the distances between atoms, the dipolar coupling strength, the order parameter of the polymer backbone chain, and so on. Furthermore, our proposed method can be used to achieve the separation of overlapped NMR signals of mobile and rigid phases in the PISEMA experiment. The high efficacy of this 2D NMR method is demonstrated on organic solids, including crystalline L-alanine, semicrystalline polyamide-6, and the natural abundant silk fibroin.


Journal of Physical Chemistry B | 2017

Conformations and Intermolecular Interactions in Cellulose/Silk Fibroin Blend Films: A Solid-State NMR Perspective

Donglin Tian; Tao Li; Rongchun Zhang; Qiang Wu; Tiehong Chen; Pingchuan Sun; Ayyalusamy Ramamoorthy

Fabricating materials with excellent mechanical performance from the natural renewable and degradable biopolymers has drawn significant attention in recent decades due to the environmental concerns and energy crisis. As two of the most promising substitutes of synthetic polymers, silk fibroin (SF), and cellulose, have been widely used in the field of textile, biomedicine, biotechnology, etc. Particularly, the cellulose/SF blend film exhibits better strength and toughness than that of regenerated cellulose film. Herein, this study is aimed to understand the molecular origin of the enhanced mechanical properties for the cellulose/SF blend film, using solid-state NMR as a main tool to investigate the conformational changes, intermolecular interactions between cellulose and SF and the water organization. It is found that the content of the β-sheet structure is increased in the cellulose/SF blend film with respect to the regenerated SF film, accompanied by the reduction of the content of random coil structures. In addition, the strong hydrogen bonding interaction between the SF and cellulose is clearly elucidated by the two-dimensional (2D) 1H-13C heteronuclear correlation (HETCOR) NMR experiments, demonstrating that the SF and cellulose are miscible at the molecular level. Moreover, it is also found that the -NH groups of SF prefer to form hydrogen bonds with the hydroxyl groups bonded to carbons C2 and C3 of cellulose, while the hydroxyl groups bonded to carbon C6 and the ether oxygen are less favorable for hydrogen bonding interactions with the -NH groups of SF. Interestingly, bound water is found to be present in the air-dried cellulose/SF blend film, which is predominantly associated with the cellulose backbones as determined by 2D 1H-13C wide-line-separation (WISE) experiments with spin diffusion. This clearly reveals the presence of nanoheterogeneity in the cellulose/SF blend film, although cellulose and SF are miscible at a molecular level. Without doubt, these in-depth atomic-level structural information could help reveal the molecular origin of the enhanced mechanical properties of the blend film, and thus to establish the structure-property relationship, which could further provide guidance for the fabrication of high performance biopolymer-based materials.


ACS Applied Materials & Interfaces | 2014

Probing the Nanostructure, Interfacial Interaction, and Dynamics of Chitosan-Based Nanoparticles by Multiscale Solid-State NMR

Fenfen Wang; Rongchun Zhang; Qiang Wu; Tiehong Chen; Pingchuan Sun; An-Chang Shi

Chitosan-based nanoparticles (NPs) are widely used in drug and gene delivery, therapy, and medical imaging, but a molecular-level understanding of the internal morphology and nanostructure size, interface, and dynamics, which is critical for building fundamental knowledge for the precise design and efficient biological application of the NPs, remains a great challenge. Therefore, the availability of a multiscale (0.1-100 nm) and nondestructive analytical technique for examining such NPs is of great importance for nanotechnology. Herein, we present a new multiscale solid-state NMR approach to achieve this goal for the investigation of chitosan-poly(N-3-acrylamidophenylboronic acid) NPs. First, a recently developed (13)C multiple cross-polarization magic-angle spinning (MAS) method enabled fast quantitative determination of the NPs composition and detection of conformational changes in chitosan. Then, using an improved (1)H spin-diffusion method with (13)C detection and theoretical simulations, the internal morphology and nanostructure size were quantitatively determined. The interfacial coordinated interaction between chitosan and phenylboronic acid was revealed by one-dimensional MAS and two-dimensional (2D) triple-quantum MAS (11)B NMR. Finally, dynamic-editing (13)C MAS and 2D (13)C-(1)H wide-line separation experiments provided details regarding the componential dynamics of the NPs in the solid and swollen states. On the basis of these NMR results, a model of the unique nanostructure, interfacial interaction, and componential dynamics of the NPs was proposed.


Journal of Physical Chemistry A | 2011

Efficient Identification of Different Types of Carbons in Organic Solids by 2D Solid-State NMR Spectroscopy

Rongchun Zhang; Xin He; Weigui Fu; Tiehong Chen; Pingchuan Sun; Baohui Li; Datong Ding

An efficient method for identifying different types of carbon groups (CH(3), CH(2), CH, and quaternary carbons) in organic solids is proposed by utilizing the combination of a two-dimensional (2D) (13)C-(1)H polarization inversion spin exchange at magic angle (PISEMA) NMR experiment and numerical simulation results of simple isolated (13)C-(1)H dipolar coupling models. Our results reveal that there is a unique line shape of the (13)C-(1)H dipolar splitting pattern and a corresponding characteristic splitting value for each carbon group, based on which different carbon types can be distinguished unambiguously. In particular, by using this method, the discrimination and assignment of overlapped signals from different types of carbons can be achieved easily. The efficacy of this method is demonstrated on typical solid small molecules, polymers, and biomacromolecules.


RSC Advances | 2017

Rapid self-healing and recycling of multiple-responsive mechanically enhanced epoxy resin/graphene nanocomposites

Chenting Cai; Yue Zhang; Xueting Zou; Rongchun Zhang; Xiaoliang Wang; Qiang Wu; Pingchuan Sun

The development of self-healing and recyclable crosslinked polymeric materials has drawn considerable attention in recent years. However, the bulk healing or remending speed is usually slow due to the high viscosity of high Mw polymers, and the low rate of thermal conduction from material surfaces into the central matrix. Herein, a rapid self-healing and recyclable high-performance crosslinked epoxy resin (ER)/graphene nanocomposite is reported by simultaneously incorporating thermally reversible Diels–Alder (DA) covalent bonds and multiple-responsive graphene into the ER matrix. Therefore, graphene in proximity to the DA crosslinkages can instantly trigger the retro-DA reactions by converting the absorbed energies (e.g. infrared light, microwave, etc.) into heat, and thus enables rapid self-healing and recycling. Furthermore, the well-dispersed graphene (<1 wt%) could significantly enhance the mechanical strength of the ER. In situ variable temperature solid-state NMR spectroscopy was used to monitor the reversible DA reactions at the molecular level, and the high healing and recycling efficiency of ER/graphene nanocomposites was well demonstrated by multiple approaches.


Chinese Journal of Polymer Science | 2016

Probing the two-stage transition upon crossing the glass transition of polystyrene by solid-state NMR

Yong-jin Peng; Chenting Cai; Rongchun Zhang; Tiehong Chen; Pingchuan Sun; Baohui Li; Xiaoliang Wang; Gi Xue; An-Chang Shi

A two-stage transition upon crossing the glass transition of polystyrene with increasing temperature was precisely determined and interpreted by using solid-state nuclear magnetic resonance (SSNMR), 1H-1H dipolar couplings based double quantum-filtered (DQF) and dipolar filter (DF) experiments and 13C chemical shift anisotropy (CSA) based centerband-only detection of exchange (CODEX) experiment are used to fully characterize the time scale of molecular motions during the glass transition. While differential scanning calorimetry (DSC) and CODEX experiment predicted the first stage of glass transiton, DQF and DF experiments provided the evidence for the second stage transition during which the time scale of molecular motions changed from very slow (t > ms) to very fast (t < µs). The first stage of glass transition begins with the occurrence of remarkable slow re-orientation motions of the polymer backbone segments and ends when the degree of slow motion reaches maximum. The onset and endpoint of the conventional calorimetric glass transition of polystyrene can be quantitatively determined at the molecular level by SSNMR. In the second stage, a subsequent dramatic transition associated with the melting of the glassy components was observed. In this stage liquid-like NMR signals appeared and rapidly increased in intensity after a characteristic temperature Tf (~1.1Tg). The signals associated with the glassy components completely disappeared at another characteristic temperature Tc (~1.2Tg).


European Physical Journal E | 2015

Effect of PEO molecular weight on the miscibility and dynamics in epoxy/PEO blends

Shoudong Lu; Rongchun Zhang; Xiaoliang Wang; Pingchuan Sun; Weifeng Lv; Qingjie Liu; Ninghong Jia

Abstract.In this work, the effect of poly(ethylene oxide) (PEO) molecular weight in blends of epoxy (ER) and PEO on the miscibility, inter-chain weak interactions and local dynamics were systematically investigated by multi-frequency temperature modulation DSC and solid-state NMR techniques. We found that the molecular weight (Mw) of PEO was a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interactions between PEO and ER. A critical PEO molecular weight (Mcrit) around 4.5k was found. PEO was well miscible with ER when the molecular weight was below Mcrit, where the chain motion of PEO was restricted due to strong inter-chain hydrogen bonding interactions. However, for the blends with high molecular weight PEO (Mw > Mcrit), the miscibility between PEO and ER was poor, and most of PEO chains were considerably mobile. Finally, polarization inversion spin exchange at magic angle (PISEMA) solid-state NMR experiment further revealed the different mobility of the PEO in ER/PEO blends with different molecular weight of PEO at molecular level. Based on the DSC and NMR results, a tentative model was proposed to illustrate the miscibility in ER/PEO blends.Graphical abstract


RSC Advances | 2018

Multiple-responsive shape memory polyacrylonitrile/graphene nanocomposites with rapid self-healing and recycling properties

Chenting Cai; Yue Zhang; Mei Li; Yan Chen; Rongchun Zhang; Xiaoliang Wang; Qiang Wu; Tiehong Chen; Pingchuan Sun

It still remains a great challenge to endow polymer materials with multiple superior material properties by precise molecular design. Herein, we report a Diels–Alder (DA) based crosslinked polyacrylonitrile/graphene nanocomposite (PAN-DA/GR), which has multiple-responsive properties of shape memory, self-healing, and reprocessing in addition to enhanced mechanical properties. The graphene sheets, which are well dispersed in the DA-based crosslinked PAN network, can act as intrinsic localized thermal sources by converting the absorbed external IR/microwave energies into heat, to trigger the glass transition for elasticity-based shape memory properties and retro-DA (rDA) reactions for healing. The incorporation of Diels–Alder bonds also gives the material solid state plasticity through topological network rearrangement, thus leading to versatile shape adaptability. Moreover, both regional shape control and targeted self-healing of the nanocomposites can be simply achieved by IR laser irradiation. Besides, the incorporation of a small amount of graphene can significantly improve the mechanical strength with respect to the DA-based crosslinked PAN. Both DSC and in situ variable temperature 13C solid-state NMR experiments were used to monitor the reversible DA reactions.

Collaboration


Dive into the Rongchun Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge