Rongqian Yang
National Oceanic and Atmospheric Administration
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rongqian Yang.
Bulletin of the American Meteorological Society | 2010
Suranjana Saha; Shrinivas Moorthi; Hua-Lu Pan; Xingren Wu; Jiande Wang; Sudhir Nadiga; Patrick Tripp; Robert Kistler; John S. Woollen; David Behringer; Haixia Liu; Diane Stokes; Robert Grumbine; George Gayno; Jun Wang; Yu-Tai Hou; Hui-Ya Chuang; Hann-Ming H. Juang; Joe Sela; Mark Iredell; Russ Treadon; Daryl T. Kleist; Paul Van Delst; Dennis Keyser; John Derber; Michael B. Ek; Jesse Meng; Helin Wei; Rongqian Yang; Stephen J. Lord
The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global oceans latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice m...
Journal of Climate | 2014
Suranjana Saha; Shrinivas Moorthi; Xingren Wu; Jiande Wang; Sudhir Nadiga; Patrick Tripp; David Behringer; Yu-Tai Hou; Hui-Ya Chuang; Mark Iredell; Michael B. Ek; Jesse Meng; Rongqian Yang; Malaquias Mendez; Huug van den Dool; Qin Zhang; Wanqiu Wang; Mingyue Chen; Emily Becker
AbstractThe second version of the NCEP Climate Forecast System (CFSv2) was made operational at NCEP in March 2011. This version has upgrades to nearly all aspects of the data assimilation and forecast model components of the system. A coupled reanalysis was made over a 32-yr period (1979–2010), which provided the initial conditions to carry out a comprehensive reforecast over 29 years (1982–2010). This was done to obtain consistent and stable calibrations, as well as skill estimates for the operational subseasonal and seasonal predictions at NCEP with CFSv2. The operational implementation of the full system ensures a continuity of the climate record and provides a valuable up-to-date dataset to study many aspects of predictability on the seasonal and subseasonal scales. Evaluation of the reforecasts show that the CFSv2 increases the length of skillful MJO forecasts from 6 to 17 days (dramatically improving subseasonal forecasts), nearly doubles the skill of seasonal forecasts of 2-m temperatures over the ...
Bulletin of the American Meteorological Society | 2005
David S. Gutzler; H. K. Kim; R. W. Higgins; Henry Juang; Masao Kanamitsu; Kenneth E. Mitchell; Kingtse C. Mo; P. Pegion; Elizabeth A. Ritchie; Jae Schemm; Siegfried D. Schubert; Y. Song; Rongqian Yang
AMERICAN METEOROLOGICAL SOCIETY | 1423 AFFILIATIONS: GUTZLER AND RITCHIE—University of New Mexico, Albuquerque, New Mexico; KIM, HIGGINS, MO, SCHEMM, AND SONG—Climate Prediction Center, NCEP/NWS/NOAA, Camp Springs, Maryland; KANAMITSU—Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California; JUANG, MITCHELL, AND YANG—Environmental Modeling Center, NCEP/NWS/NOAA, Camp Springs, Maryland; PEGION— Global Modeling and Assimilation Office, NASA/GSFC, Greenbelt, Maryland, and Science Applications International Corporation (SAIC), Beltsville, Maryland; SCHUBERT—Global Modeling and Assimilation Office, NASA/GSFC, Greenbelt, Maryland *Current affiliation: Climate Prediction Division, Korea Meteorological Administration, Seoul, Korea CORRESPONDING AUTHOR: Dr. David S. Gutzler, Earth and Planetary Sciences Department, University of New Mexico MSC03-2040, Albuquerque, NM 87131 E-mail: [email protected] DOI:10.1175/BAMS-86-10-1423
Journal of Hydrometeorology | 2012
Jesse Meng; Rongqian Yang; Helin Wei; Michael B. Ek; George Gayno; Pingping Xie; Kenneth E. Mitchell
AbstractThe NCEP Climate Forecast System Reanalysis (CFSR) uses the NASA Land Information System (LIS) to create its land surface analysis: the NCEP Global Land Data Assimilation System (GLDAS). Comparing to the previous two generations of NCEP global reanalyses, this is the first time a coupled land–atmosphere data assimilation system is included in a global reanalysis. Global observed precipitation is used as direct forcing to drive the land surface analysis, rather than the typical reanalysis approach of using precipitation assimilating from a background atmospheric model simulation. Global observed snow cover and snow depth fields are used to constrain the simulated snow variables. This paper describes 1) the design and implementation of GLDAS/LIS in CFSR, 2) the forcing of the observed global precipitation and snow fields, and 3) preliminary results of global and regional soil moisture content and land surface energy and water budgets closure. With special attention made during the design of CFSR GLD...
Journal of Climate | 2011
Rongqian Yang; Kenneth E. Mitchell; Jesse Meng; Michael B. Ek
AbstractTo examine the impact from land model upgrades and different land initializations on the National Centers for Environmental Prediction (NCEP)’s Climate Forecast System (CFS), extensive T126 CFS experiments are carried out for 25 summers with 10 ensemble members using the old Oregon State University (OSU) land surface model (LSM) and the new Noah LSM. The CFS using the Noah LSM, initialized in turn with land states from the NCEP–Department of Energy Global Reanalysis 2 (GR-2), Global Land Data System (GLDAS), and GLDAS climatology, is compared to the CFS control run using the OSU LSM initialized with the GR-2 land states. Using anomaly correlation as a primary measure, the summer-season prediction skill of the CFS using different land models and different initial land states is assessed for SST, precipitation, and 2-m air temperature over the contiguous United States (CONUS) on an ensemble basis.Results from these CFS experiments indicate that upgrading from the OSU LSM to the Noah LSM improves the...
Archive | 2011
Suranjana Saha; Shrinivas Moorthi; Xingren Wu; Jiande Wang; Sudhir Nadiga; Patrick Tripp; David Behringer; Yu-Tai Hou; Hui-Ya Chuang; Mark Iredell; Michael B. Ek; Jesse Meng; Rongqian Yang; Malaquias Mendez; Huug van den Dool; Qin Zhang; Wanqiu Wang; Mingyue Chen; Emily Becker
The National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) is initialized four times per day (0000, 0600, 1200, and 1800 UTC). NCEP upgraded their operational CFS to version 2 on March 30, 2011. This is the same model that was used to create the NCEP Climate Forecast System Reanalysis (CFSR), and the purpose of this dataset is to extend CFSR. The 6-hourly atmospheric, oceanic and land surface analyzed products and forecasts, available at 0.2, 0.5, 1.0, and 2.5 degree horizontal resolutions, are archived here beginning with January 1, 2011 as an extension of CFSR. The RDA is not archiving any of the CFS seasonal forecasts. For more information about CFS, please see http://cfs.ncep.noaa.gov/ [http://cfs.ncep.noaa.gov/].
Journal of Hydrometeorology | 2007
Song Yang; S-H. Yoo; Rongqian Yang; K. Mitchell; H. van den Dool; R. W. Higgins
Abstract This study employs the NCEP Eta Regional Climate Model to investigate the response of the model’s seasonal simulations of summer precipitation to high-frequency variability of soil moisture. Specifically, it focuses on the response of model precipitation and temperature over the U.S. Midwest and Southeast to imposed changes in the diurnal and synoptic variability of soil moisture in 1988 and 1993. High-frequency variability of soil moisture increases (decreases) precipitation in the 1988 drought (1993 flood) year in the central and southern-tier states, except along the Gulf Coast, but causes smaller changes in precipitation along the northern-tier states. The diurnal variability and synoptic variability of soil moisture produce similar patterns of precipitation change, indicating the importance of the diurnal cycle of land surface process. The increase (decrease) in precipitation is generally accompanied by a decrease (increase) in surface and lower-tropospheric temperatures, and the changes in ...
Archive | 2010
Suranjana Saha; Shrinivas Moorthi; Hua-Lu Pan; Xingren Wu; Jie Wang; Sudhir Nadiga; Patrick Tripp; Robert Kistler; John S. Woollen; David Behringer; Haixia Liu; Diane Stokes; Robert Grumbine; George Gayno; Jun Wang; Yu-Tai Hou; Hui-Ya Chuang; Hann-Ming Juang; Joe Sela; Mark Iredell; Russ Treadon; Daryl T. Kleist; Paul Van Delst; Dennis Keyser; John Derber; Michael B. Ek; Jesse Meng; Helin Wei; Rongqian Yang; Stephen J. Lord
The National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) was initially completed over the 31-year period from 1979 to 2009 and has been extended to March 2011. NCEP has created selected time series products at hourly temporal resolution by combining either 1) the analysis and one- through five-hour forecasts, or 2) the one- through six-hour forecasts, for each initialization time. Please note that NCEP only created time series for parameter/level combinations that they thought would be most useful to users. Time series that do not exist in this dataset can be created from the full 6-hourly products dataset at http://rda.ucar.edu/datasets/ds093.0/ [http://rda.ucar.edu/datasets/ds093.0/].\n\n For more information about CFSR in general, please see this page [http://rda.ucar.edu/#!pub/cfsr.html]. For data to extend CFSR beyond March 2011, please see the Climate Forecast System Version 2 (CFSv2) datasets.
Journal of Hydrometeorology | 2015
Rongqian Yang; Michael B. Ek; Jesse Meng
AbstractSurface water and energy budgets from the National Centers for Environmental Prediction–U.S. Department of Energy (NCEP–DOE) Atmospheric Model Intercomparison Project (AMIP-II) Global Reanalysis 2 (GR2), the North American Regional Reanalysis (NARR), and the NCEP Climate Forecast System Reanalysis (CFSR) are compared here with each other and with available observations over the Mississippi River basin. The comparisons in seasonal cycle, interannual variation, and annual mean over a 31-yr period show that there are a number of noticeable differences and similarities in the large-scale basin averages. Warm season precipitation and runoff in the GR2 are too large compared to the observations, and seasonal surface water variation is small. By contrast, the precipitation in both NARR and CFSR is more reasonable and in better agreement with the observation, although the corresponding seasonal runoff is very small. The main causes of the differences in both surface parameterization and approach used in a...
Archive | 2011
Suranjana Saha; Shrinivas Moorthi; Xingren Wu; Jiande Wang; Sudhir Nadiga; Patrick Tripp; David Behringer; Yu-Tai Hou; Hui-Ya Chuang; Mark Iredell; Michael B. Ek; Jesse Meng; Rongqian Yang; Malaquias Mendez; Huug van den Dool; Qin Zhang; Wanqiu Wang; Mingyue Chen; Emily Becker
The National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) is initialized four times per day (0000, 0600, 1200, and 1800 UTC). NCEP upgraded CFS to version 2 on March 30, 2011. This is the same model that was used to create the NCEP Climate Forecast System Reanalysis (CFSR).\n\nSelected CFS time series products are those that are expected to be most useful to users of the dataset, but the products here are by no means an exhaustive compilation of all of the possible products that could be created from the full 6-hourly CFS dataset.\n\nThe products here are available at 0.2, 0.5, 1.0, and 2.5 degree horizontal resolutions at hourly intervals by combining either 1) the analysis and one- through five-hour forecasts, or 2) the one- through six-hour forecasts, for each initialization time. Beginning with January 1, 2011, these data are archived as an extension of CFSR.\n\nThe files in this dataset are grouped by month, so data for a particular month are not available until a few days into the subsequent month. If you need data for the current month, please consult the CFSv2 dataset that contains the complete suite of 6-hourly products.\n\nFor more information about CFS, please see http://cfs.ncep.noaa.gov/ [http://cfs.ncep.noaa.gov/].