Roni Penn
Technion – Israel Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roni Penn.
Urban Water Journal | 2012
Roni Penn; Matan Hadari; Eran Friedler
This simulation study, based on experimental and literature data, evaluates the influence of onsite greywater reuse on domestic wastewater quality and quantity. For this, three scenarios were studied: no reuse; reuse for toilet flushing; reuse for toilet flushing and garden irrigation. Light greywater reuse reduced the daily household wastewater flows by 25–40%. These reductions mainly occurred during the morning and evening peak wastewater generation. Although daily loads of all pollutants decreased, their concentrations in the discharged wastewater increased owing to exclusion of potable water from the wastewater and replacing it by treated light greywater. The proportional concentration increase of most pollutants was lower than the decrease in wastewater discharge, due to degradation during treatment. The highest concentration increase occurred during the morning peak, coinciding with the highest flow reduction. This study is a first step towards quantification of the effects of onsite greywater reuse on sewers and wastewater treatment plants.
Journal of Environmental Management | 2013
Roni Penn; M. Schütze; Eran Friedler
On-site greywater reuse (GWR) and installation of water-efficient toilets (WET) reduce urban freshwater demand. Research on GWR and WET has generally overlooked the effects that GWR may have on municipal sewer systems. This paper discusses and quantifies these effects. The effects of GWR and WET, positive and negative, were studied by modelling a representative urban sewer system. GWR scenarios were modelled and analysed using the SIMBA simulation system. The results show that, as expected, the flow, velocity and proportional depth decrease as GWR increases. Nevertheless, the reduction is not evenly distributed throughout the day but mainly occurs during the morning and evening peaks. Examination of the effects of reduced toilet flush volumes revealed that in some of the GWR scenarios flows, velocities and proportional depths in the sewer were reduced, while in other GWR scenarios discharge volumes, velocities and proportional depths did not change. Further, it is indicated that as a result of GWR and installation of WET, sewer blockage rates are not expected to increase significantly. The results support the option to construct new sewer systems with smaller pipe diameters. The analysis shows that as the penetration of GWR systems increase, and with the installation of WET, concentrations of pollutants also increase. In GWR scenarios (when toilet flush volume is not reduced) the increase in pollutant concentrations is lower than the proportional reduction of sewage flow. Moreover, the results show that the spatial distribution of houses reusing GW does not significantly affect the parameters examined.
Water Research | 2013
Roni Penn; Eran Friedler; Avi Ostfeld
Sustainable design and implementation of greywater reuse (GWR) has to achieve an optimum compromise between costs and potable water demand reduction. Studies show that GWR is an efficient tool for reducing potable water demand. This study presents a multi-objective optimization model for estimating the optimal distribution of different types of GWR homes in an existing municipal sewer system. Six types of GWR homes were examined. The model constrains the momentary wastewater (WW) velocity in the sewer pipes (which is responsible for solids movement). The objective functions in the optimization model are the total WW flow at the outlet of the neighborhoods sewer system and the cost of the on-site GWR treatment system. The optimization routing was achieved by an evolutionary multi-objective optimization coupled with hydrodynamic simulations of a representative sewer system of a neighborhood located at the coast of Israel. The two non-dominated best solutions selected were the ones having either the smallest WW flow discharged at the outlet of the neighborhood sewer system or the lowest daily cost. In both solutions most of the GWR types chosen were the types resulting with the smallest water usage. This lead to only a small difference between the two best solutions, regarding the diurnal patterns of the WW flows at the outlet of the neighborhood sewer system. However, in the upstream link a substantial difference was depicted between the diurnal patterns. This difference occurred since to the upstream links only few homes, implementing the same type of GWR, discharge their WW, and in each solution a different type of GWR was implemented in these upstream homes. To the best of our knowledge this is the first multi-objective optimization model aimed at quantitatively trading off the cost of local/onsite GW spatially distributed reuse treatments, and the total amount of WW flow discharged into the municipal sewer system under unsteady flow conditions.
Water Science and Technology | 2014
Roni Penn; Manfred Schütze; Eran Friedler
Onsite greywater reuse (GWR) and installation of water-efficient toilets (WETs) reduce urban freshwater demand and thus enhance urban water use sustainability. Research on GWR and WETs has generally overlooked their potential effects on municipal sewer systems: GWR and WETs affect the flow regime in sewers, and consequently also influence gross solids transport. To asses these impacts, a gross solids transport model was developed. The model is based on approaches found in the literature. Hydrodynamic calculations of sewage flow were performed using the SIMBA6 simulator and then used for the gross solid movement models. Flow characteristics in the up- and downstream sections of the sewer network differ. Therefore different approaches were used to model solids movement in each of these two parts. Each model determines whether a solid moves as a result of a momentary sewage flow, and if it moves, calculation of its velocity is possible. The paper shows the adoption and implementation of two gross solids transport models using SIMBA6 and depicts the results of the effects of various GWR and WET scenarios on gross solids movement in sewers for a real case study in Israel.
Water Science and Technology | 2017
Roni Penn; Manfred Schütze; Jens Alex; Eran Friedler
Together with significant water savings that onsite greywater reuse (GWR) may provide, it may also affect the performance of urban sewer systems and wastewater treatment plants (WWTPs). In order to examine these effects, an integrated stochastic simulation system for GWR in urban areas was developed. The model includes stochastic generators of domestic wastewater streams and gross solids (GSs), a sewer network model which includes hydrodynamic simulation and a GS transport module, and a dynamic process model of the WWTP. The developed model was applied to a case study site in Israel. For the validation of the sewer simulator, field experiments in a real sewer segment were conducted. The paper presents the integration and implementation of these modules and depicts the results of the effects of various GWR scenarios on GS movement in sewers and on the performance of the WWTP.
Urban Water Journal | 2017
Roni Penn; Manfred Schütze; Malka Gorfine; Eran Friedler
Abstract Together with significant water saving, due to lower wastewater discharges, greywater reuse (GWR) may also increase the impacts of faecal matter and other gross solids (GS) on sewer systems (sedimentation, blocking). Modelling and assessments of these effects require detailed descriptions of individual domestic wastewater streams. A novel stochastic methodology to generate such streams was developed and validated. The generator was developed while considering dependencies between in-house water-use events, and their varying degree of elasticity. These generated streams served as input to a sewer model, where scenarios of GWR were simulated and their effects on GS transport were examined. Extensive GWR decreases GS movement mostly in upstream links. Nevertheless, transient high flows, characterising these links, may move stationary GS and prevent blockages. The developed generator can be adopted to other sewer-related studies. Intelligent implementation of the results can assist in introducing GWR, or other water saving measures to the urban sector.
Desalination | 2008
Liat Birnhack; Roni Penn; Ori Lahav
Water Science & Technology: Water Supply | 2009
Roni Penn; Liat Birnhack; Avner Adin; Ori Lahav
Desalination and Water Treatment | 2010
Liat Birnhack; Roni Penn; Shaul Oren; Orly Lehmann; Ori Lahav
Archive | 2010
Ori Lahav; Liat Birnhack; Malka Kochva; Roni Penn