Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronny Joosen is active.

Publication


Featured researches published by Ronny Joosen.


Plant Journal | 2010

GERMINATOR: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination

Ronny Joosen; Jan Kodde; Leo A. J. Willems; Wilco Ligterink; Linus H. W. van der Plas; Henk W. M. Hilhorst

Over the past few decades seed physiology research has contributed to many important scientific discoveries and has provided valuable tools for the production of high quality seeds. An important instrument for this type of research is the accurate quantification of germination; however gathering cumulative germination data is a very laborious task that is often prohibitive to the execution of large experiments. In this paper we present the germinator package: a simple, highly cost-efficient and flexible procedure for high-throughput automatic scoring and evaluation of germination that can be implemented without the use of complex robotics. The germinator package contains three modules: (i) design of experimental setup with various options to replicate and randomize samples; (ii) automatic scoring of germination based on the color contrast between the protruding radicle and seed coat on a single image; and (iii) curve fitting of cumulative germination data and the extraction, recap and visualization of the various germination parameters. The curve-fitting module enables analysis of general cumulative germination data and can be used for all plant species. We show that the automatic scoring system works for Arabidopsis thaliana and Brassica spp. seeds, but is likely to be applicable to other species, as well. In this paper we show the accuracy, reproducibility and flexibility of the germinator package. We have successfully applied it to evaluate natural variation for salt tolerance in a large population of recombinant inbred lines and were able to identify several quantitative trait loci for salt tolerance. Germinator is a low-cost package that allows the monitoring of several thousands of germination tests, several times a day by a single person.


Planta | 2006

Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.)

Chinnathambi Srinivasan; Zong rang Liu; Iris Heidmann; Ence Darmo Jaya Supena; Hiro Fukuoka; Ronny Joosen; Joep Lambalk; Gerco C. Angenent; Ralph Scorza; Jan Custers; Kim Boutilier

Gain-of-function studies have shown that ectopic expression of the BABY BOOM (BBM) AP2/ERF domain transcription factor is sufficient to induce spontaneous somatic embryogenesis in Arabidopsis (Arabidopsis thaliana (L.) Heynh) and Brassica napus (B. napus L.) seedlings. Here we examined the effect of ectopic BBM expression on the development and regenerative capacity of tobacco (Nicotiana tabacum L.) through heterologous expression of Arabidopsis and B. napus BBM genes. 35S::BBM tobacco lines exhibited a number of the phenotypes previously observed in 35S::BBM Arabidopsis and B. napus transgenics, including callus formation, leaf rumpling, and sterility, but they did not undergo spontaneous somatic embryogenesis. 35S::BBM plants with severe ectopic expression phenotypes could not be assessed for enhanced regeneration at the seedling stage due to complete male and female sterility of the primary transformants, therefore fertile BBM ectopic expression lines with strong misexpression phenotypes were generated by expressing a steroid-inducible, post-translationally controlled BBM fusion protein (BBM:GR) under the control of a 35S promoter. These lines exhibited spontaneous shoot and root formation, while somatic embryogenesis could be induced from in-vitro germinated seedling hypocotyls cultured on media supplemented with cytokinin. Together these results suggest that ectopic BBM expression in transgenic tobacco also activates cell proliferation pathways, but differences exist between Arabidopsis/B. napus and N. tabacum with respect to their competence to respond to the BBM signalling molecule.


Plant Physiology | 2007

Combined Transcriptome and Proteome Analysis Identifies Pathways and Markers Associated with the Establishment of Rapeseed Microspore-Derived Embryo Development

Ronny Joosen; Jan Cordewener; Ence Darmo Jaya Supena; O.F.J. Vorst; Michiel Lammers; Chris Maliepaard; Tieme Zeilmaker; Brian Miki; Twan America; Jan Custers; Kim Boutilier

Microspore-derived embryo (MDE) cultures are used as a model system to study plant cell totipotency and as an in vitro system to study embryo development. We characterized and compared the transcriptome and proteome of rapeseed (Brassica napus) MDEs from the few-celled stage to the globular/heart stage using two MDE culture systems: conventional cultures in which MDEs initially develop as unorganized clusters that usually lack a suspensor, and a novel suspensor-bearing embryo culture system in which the embryo proper originates from the distal cell of a suspensor-like structure and undergoes the same ordered cell divisions as the zygotic embryo. Improved histodifferentiation of suspensor-bearing MDEs suggests a new role for the suspensor in driving embryo cell identity and patterning. An MDE culture cDNA array and two-dimensional gel electrophoresis and protein sequencing were used to compile global and specific expression profiles for the two types of MDE cultures. Analysis of the identities of 220 candidate embryo markers, as well as the identities of 32 sequenced embryo up-regulated protein spots, indicate general roles for protein synthesis, glycolysis, and ascorbate metabolism in the establishment of MDE development. A collection of 135 robust markers for the transition to MDE development was identified, a number of which may be coregulated at the gene and protein expression level. Comparison of the expression profiles of preglobular-stage conventional MDEs and suspensor-bearing MDEs identified genes whose differential expression may reflect improved histodifferentiation of suspensor-bearing embryos. This collection of early embryo-expressed genes and proteins serves as a starting point for future marker development and gene function studies aimed at understanding the molecular regulation of cell totipotency and early embryo development in plants.


Plant Molecular Biology | 2008

BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways

Paul Passarinho; Tijs Ketelaar; Meiqing Xing; Jeroen van Arkel; Chris Maliepaard; Mieke Weemen Hendriks; Ronny Joosen; Michiel Lammers; Lydia Herdies; Bart den Boer; Lonneke van der Geest; Kim Boutilier

Ectopic expression of the Brassica napus BABY BOOM (BBM) AP2/ERF transcription factor is sufficient to induce spontaneous cell proliferation leading primarily to somatic embryogenesis, but also to organogenesis and callus formation. We used DNA microarray analysis in combination with a post-translationally regulated BBM:GR protein and cycloheximide to identify target genes that are directly activated by BBM expression in Arabidopsis seedlings. We show that BBM activated the expression of a largely uncharacterized set of genes encoding proteins with potential roles in transcription, cellular signaling, cell wall biosynthesis and targeted protein turnover. A number of the target genes have been shown to be expressed in meristems or to be involved in cell wall modifications associated with dividing/growing cells. One of the BBM target genes encodes an ADF/cofilin protein, ACTIN DEPOLYMERIZING FACTOR9 (ADF9). The consequences of BBM:GR activation on the actin cytoskeleton were followed using the GFP:FIMBRIN ACTIN BINDING DOMAIN2 (GFP:FABD) actin marker. Dexamethasone-mediated BBM:GR activation induced dramatic changes in actin organization resulting in the formation of dense actin networks with high turnover rates, a phenotype that is consistent with cells that are rapidly undergoing cytoplasmic reorganization. Together the data suggest that the BBM transcription factor activates a complex network of developmental pathways associated with cell proliferation and growth.


Current Genomics | 2009

Advances in genetical genomics of plants.

Ronny Joosen; Wilco Ligterink; Henk W. M. Hilhorst; Joost J. B. Keurentjes

Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the causal genes underlying QTLs is a major challenge for which the detection of gene expression differences is of major importance. By combining genetics with large scale expression profiling (i.e. genetical genomics), resulting in expression QTLs (eQTLs), great progress can be made in connecting phenotypic variation to genotypic diversity. In this review we discuss examples from human, mouse, Drosophila, yeast and plant research to illustrate the advances in genetical genomics, with a focus on understanding the regulatory mechanisms underlying natural variation. With their tolerance to inbreeding, short generation time and ease to generate large families, plants are ideal subjects to test new concepts in genetics. The comprehensive resources which are available for Arabidopsis make it a favorite model plant but genetical genomics also found its way to important crop species like rice, barley and wheat. We discuss eQTL profiling with respect to cis and trans regulation and show how combined studies with other ‘omics’ technologies, such as metabolomics and proteomics may further augment current information on transcriptional, translational and metabolomic signaling pathways and enable reconstruction of detailed regulatory networks. The fast developments in the ‘omics’ area will offer great potential for genetical genomics to elucidate the genotype-phenotype relationships for both fundamental and applied research.


Plant Physiology | 2012

Visualizing the Genetic Landscape of Arabidopsis Seed Performance

Ronny Joosen; Danny Arends; Leo A. J. Willems; Wilco Ligterink; Ritsert C. Jansen; Henk W. M. Hilhorst

Perfect timing of germination is required to encounter optimal conditions for plant survival and is the result of a complex interaction between molecular processes, seed characteristics, and environmental cues. To detangle these processes, we made use of natural genetic variation present in an Arabidopsis (Arabidopsis thaliana) Bayreuth × Shahdara recombinant inbred line population. For a detailed analysis of the germination response, we characterized rate, uniformity, and maximum germination and discuss the added value of such precise measurements. The effects of after-ripening, stratification, and controlled deterioration as well as the effects of salt, mannitol, heat, cold, and abscisic acid (ABA) with and without cold stratification were analyzed for these germination characteristics. Seed morphology (size and length) of both dry and imbibed seeds was quantified by using image analysis. For the overwhelming amount of data produced in this study, we developed new approaches to perform and visualize high-throughput quantitative trait locus (QTL) analysis. We show correlation of trait data, (shared) QTL positions, and epistatic interactions. The detection of similar loci for different stresses indicates that, often, the molecular processes regulating environmental responses converge into similar pathways. Seven major QTL hotspots were confirmed using a heterogeneous inbred family approach. QTLs colocating with previously reported QTLs and well-characterized mutants are discussed. A new connection between dormancy, ABA, and a cripple mucilage formation due to a naturally occurring mutation in the MUCILAGE-MODIFIED2 gene is proposed, and this is an interesting lead for further research on the regulatory role of ABA in mucilage production and its multiple effects on germination parameters.


Planta | 2008

Buthionine sulfoximine (BSO)-mediated improvement in cultured embryo quality in vitro entails changes in ascorbate metabolism, meristem development and embryo maturation

Claudio Stasolla; Mark F. Belmonte; Muhammad Tahir; Mohamed Elhiti; Khalil Khamiss; Ronny Joosen; Chris Maliepaard; Andrew G. Sharpe; Branimir Gjetvaj; Kim Boutilier

Applications of buthionine sulfoximine (BSO), an inhibitor of GSH (reduced glutathione), which switches the cellular glutathione pool towards the oxidized form GSSG, positively influences embryo quality by improving the structure of the shoot apical meristem and promoting embryo maturation, both of which improve the post-embryonic performance of the embryos. To investigate the mechanisms underlying BSO-mediated improvement in embryo quality the transcript profiles of developing Brassica napus microspore-derived embryos cultured in the absence (control) or presence of BSO were analyzed using a 15,000-element B. napus oligo microarray. BSO applications induced major changes in transcript accumulation patterns, especially during the late phases of embryogenesis. BSO affected the transcription and activities of key enzymes involved in ascorbate metabolism, which resulted in major fluctuations in cellular ascorbate levels. These changes were related to morphological characteristics of the embryos and their post-embryonic performance. BSO applications also activated many genes controlling meristem formation and function, including ZWILLE, SHOOTMERISTEMLESS, and ARGONAUTE 1. Increased expression of these genes may contribute to the improved structural quality of the shoot poles observed in the presence of BSO. Compared to their control counterparts, middle- and late-stage BSO-treated embryos also showed increased accumulation of transcripts associated with the maturation phase of zygotic embryo development, including genes encoding ABA-responsive proteins and storage- and late-embryogenic abundant (LEA) proteins. Overall these transcriptional changes support the observation that the BSO-induced oxidized glutathione redox state allows cultured embryos to reach both morphological and physiological maturity, which in turn guarantees successful regeneration and enhanced post-embryonic growth.


Plant Physiology | 2013

Identifying genotype-by-environment interactions in the metabolism of germinating Arabidopsis seeds using Generalized Genetical Genomics

Ronny Joosen; Danny Arends; Yang Li; Leo A. J. Willems; Joost J. B. Keurentjes; Wilco Ligterink; Ritsert C. Jansen; Henk W. M. Hilhorst

A novel genetical genomics analysis of metabolites in four developmental stages of Arabidopsis germination unravels both genetic and genetic × environment loci controlling these metabolites. A complex phenotype such as seed germination is the result of several genetic and environmental cues and requires the concerted action of many genes. The use of well-structured recombinant inbred lines in combination with “omics” analysis can help to disentangle the genetic basis of such quantitative traits. This so-called genetical genomics approach can effectively capture both genetic and epistatic interactions. However, to understand how the environment interacts with genomic-encoded information, a better understanding of the perception and processing of environmental signals is needed. In a classical genetical genomics setup, this requires replication of the whole experiment in different environmental conditions. A novel generalized setup overcomes this limitation and includes environmental perturbation within a single experimental design. We developed a dedicated quantitative trait loci mapping procedure to implement this approach and used existing phenotypical data to demonstrate its power. In addition, we studied the genetic regulation of primary metabolism in dry and imbibed Arabidopsis (Arabidopsis thaliana) seeds. In the metabolome, many changes were observed that were under both environmental and genetic controls and their interaction. This concept offers unique reduction of experimental load with minimal compromise of statistical power and is of great potential in the field of systems genetics, which requires a broad understanding of both plasticity and dynamic regulation.


Seed Science Research | 2011

Visualization of molecular processes associated with seed dormancy and germination using MapMan

Ronny Joosen; Wilco Ligterink; S.J.W. Dekkers; Henk W. M. Hilhorst

Seed dormancy and germination involve the concerted operation of molecular and biochemical programmes. It has become feasible to study these processes in great detail, using the current methods for transcriptome, proteome and metabolome analysis. Yet, the large amounts of data generated by these methods are often dazzling and demand efficient tools for data visualization. We have used the freely available PageMan/MapMan package (http://MapMan.gabipd.org) to visualize transcriptome and metabolome changes in Arabidopsis thaliana seeds during dormancy and germination. Using this package we developed two seed-specific MapMan pathways, which efficiently capture the most important molecular processes in seeds. The results demonstrated the usefulness of the PageMan/MapMan package for seed research.


Seed Science Research | 2012

Unravelling the complex trait of seed quality: using natural variation through a combination of physiology, genetics and -omics technologies

Wilco Ligterink; Ronny Joosen; Henk W. M. Hilhorst

Seed quality is a complex trait that is the result of a large variety of developmental processes. The molecular-genetic dissection of these seed processes and their relationship with seed and seedling phenotypes will allow the identification of the regulatory genes and signalling pathways involved and, thus, provide the means to predict and enhance seed quality. Natural variation for seed-quality aspects found in recombinant inbred line (RIL) populations is a great resource to help unravel the complex networks involved in the acquisition of seed quality. Besides extensive phenotyping, RILs can also be profiled by -omics technologies, such as transcriptomics, proteomics and metabolomics in a sophisticated so-called generalized genetical genomics approach. This combined use of physiology, genetics and several -omics technologies, followed by advanced data analysis, allows the construction of regulatory networks involved in the various attributes of seed and seedling quality. This type of analysis of the genetic variation in RIL populations in combination with genome-wide association (GWA) studies will allow a relatively rapid identification of genes that are responsible for quality-related traits of seeds and seedlings. New developments in several -omics technologies, especially the fast-evolving next-generation sequencing techniques, will make a similar system-wide approach more applicable to non-model species in the near future and this will be a huge boost for the potential to breed for seed quality.

Collaboration


Dive into the Ronny Joosen's collaboration.

Top Co-Authors

Avatar

Henk W. M. Hilhorst

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Wilco Ligterink

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Kim Boutilier

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Chris Maliepaard

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Leo A. J. Willems

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Danny Arends

University of Groningen

View shared research outputs
Top Co-Authors

Avatar

Jan Custers

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Joost J. B. Keurentjes

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Cordewener

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge