Ronny Martin
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ronny Martin.
Nature | 2009
Geraldine Butler; Matthew D. Rasmussen; Michael F. Lin; Manuel A. S. Santos; Sharadha Sakthikumar; Carol A. Munro; Esther Rheinbay; Manfred Grabherr; Anja Forche; Jennifer L. Reedy; Ino Agrafioti; Martha B. Arnaud; Steven Bates; Alistair J. P. Brown; Sascha Brunke; Maria C. Costanzo; David A. Fitzpatrick; Piet W. J. de Groot; David Harris; Lois L. Hoyer; Bernhard Hube; Frans M. Klis; Chinnappa D. Kodira; Nicola Lennard; Mary E. Logue; Ronny Martin; Aaron M. Neiman; Elissavet Nikolaou; Michael A. Quail; Janet Quinn
Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/α2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.
Yeast | 2003
Susanne Gola; Ronny Martin; Andrea Walther; Alexander Dünkler; Jürgen Wendland
The use of PCR‐based techniques for directed gene alterations has become a standard tool in Saccharomyces cerevisiae. In our efforts to increase the speed of functional analysis of Candida albicans genes, we constructed a modular system of plasmid vectors and successfully applied PCR‐amplified functional analysis (FA)‐cassettes in the transformation of C. albicans. These cassettes facilitate: (a) gene disruptions; (b) tagging of 3′‐ends of genes with green fluorescent protein (GFP); and (c) replacements of endogenous promoters to achieve regulated expression. The modules consists of a core of three selectable marker genes, CaURA3, CaHIS1 and CaARG4. Modules for C‐terminal GFP‐tagging were generated by adding GFP‐sequences flanked at the 5′‐end by a (Gly‐Ala)3‐linker and at the 3′‐end by the S. cerevisiae URA3‐terminator to these selection markers. Promoter exchange modules consist of the respective marker genes followed by the regulatable CaMAL2 or CaMET3 promoters at their 3′‐ends. In order to ensure a reliably high rate of homologous gene targeting, the flanking homology regions required a size of 100 bp of gene‐specific sequences, which were provided with the oligonucleotide primers. The use of shorter flanking homology regions produced unsatisfactory results with C. albicans strain BWP17. With these new modules only a minimal set of primers is required to achieve the functional analysis of C. albicans genes and, therefore, provides a basic tool to increase the number of functionally characterized C. albicans genes of this human pathogen in the near future. Copyright
Fems Yeast Research | 2009
Duncan Wilson; Sascha Thewes; Katherina Zakikhany; Chantal Fradin; Antje Albrecht; Ricardo Almeida; Sascha Brunke; Katharina Grosse; Ronny Martin; François L. Mayer; Ines Leonhardt; Lydia Schild; Katja Seider; Melanie Skibbe; Silvia Slesiona; Ilse D. Jacobsen; Bernhard Hube
The human pathogenic yeast Candida albicans can cause an unusually broad range of infections reflecting a remarkable potential to adapt to various microniches within the human host. The exceptional adaptability of C. albicans is mediated by rapid alterations in gene expression in response to various environmental stimuli and this transcriptional flexibility can be monitored with tools such as microarrays. Using such technology it is possible to (1) capture a genome-wide portrait of the transcriptome that mirrors the environmental conditions, (2) identify known genes, signalling pathways and transcription factors involved in pathogenesis, (3) identify new patterns of gene expression and (4) identify previously uncharacterized genes that may be associated with infection. In this review, we describe the molecular dissection of three distinct stages of infections, covering both superficial and invasive disease, using in vitro, ex vivo and in vivo infection models and microarrays.
International Journal of Medical Microbiology | 2011
Ronny Martin; Betty Wächtler; Martin Schaller; Duncan Wilson; Bernhard Hube
Oral infections with Candida albicans are very common diseases in even only mildly immunocompromised patients. By using genome-wide microarrays, in vitro infection models and samples from patients with pseudomembranous candidiasis, several genes have been identified which encode known and unknown fungal factors associated with oral infection. The expression of selected genes has been investigated via qRT-PCR in both in vitro models and in vivo samples from patients. Several lines of evidence suggest that fungal morphology plays a key role in adhesion to and invasion into oral epithelial cells and mutants lacking regulators of hyphal formation are attenuated in their ability to invade and damage epithelial cells. Adhesion is mediated by hyphal-associated factors such as Hwp1 and the Als adhesin family. Hyphal formation facilitates epithelial invasion via two routes: active penetration and induced endocytosis. While induced endocytosis is predominantly mediated by the adhesin and invasin Als3, active penetration seems to be supported by hydrolase activity and mechanical pressure. Expression profiles reflect the morphological switch and an adaptive response to neutral pH, non-glucose carbon sources, and nitrosative stress.
PLOS ONE | 2011
Ronny Martin; Gary P. Moran; Ilse D. Jacobsen; Antje Heyken; Jenny Domey; Derek J. Sullivan; Oliver Kurzai; Bernhard Hube
The extension of germ tubes into elongated hyphae by Candida albicans is essential for damage of host cells. The C. albicans-specific gene EED1 plays a crucial role in this extension and maintenance of filamentous growth. eed1Δ cells failed to extend germ tubes into long filaments and switched back to yeast growth after 3 h of incubation during growth on plastic surfaces. Expression of EED1 is regulated by the transcription factor Efg1 and ectopic overexpression of EED1 restored filamentation in efg1Δ. Transcriptional profiling of eed1Δ during infection of oral tissue revealed down-regulation of hyphal associated genes including UME6, encoding another key transcriptional factor. Ectopic overexpression of EED1 or UME6 rescued filamentation and damage potential in eed1Δ. Transcriptional profiling during overexpression of UME6 identified subsets of genes regulated by Eed1 or Ume6. These data suggest that Eed1 and Ume6 act in a pathway regulating maintenance of hyphal growth thereby repressing hyphal-to-yeast transition and permitting dissemination of C. albicans within epithelial tissues.
Journal of Cell Science | 2011
Daniela Hellwig; Stephan Emmerth; Tobias Ulbricht; Volker Döring; Christian Hoischen; Ronny Martin; Catarina P. Samora; Andrew D. McAinsh; Christopher W. Carroll; Aaron F. Straight; Patrick Meraldi; Stephan Diekmann
Accurate chromosome segregation requires the assembly of kinetochores, multiprotein complexes that assemble on the centromere of each sister chromatid. A key step in this process involves binding of the constitutive centromere-associated network (CCAN) to CENP-A, the histone H3 variant that constitutes centromeric nucleosomes. This network is proposed to operate as a persistent structural scaffold for assembly of the outer kinetochore during mitosis. Here, we show by fluorescence resonance energy transfer (FRET) that the N-terminus of CENP-N lies in close proximity to the N-terminus of CENP-A in vivo, consistent with in vitro data showing direct binding of CENP-N to CENP-A. Furthermore, we demonstrate in living cells that CENP-N is bound to kinetochores during S phase and G2, but is largely absent from kinetochores during mitosis and G1. By measuring the dynamics of kinetochore binding, we reveal that CENP-N undergoes rapid exchange in G1 until the middle of S phase when it becomes stably associated with kinetochores. The majority of CENP-N is loaded during S phase and dissociates again during G2. We propose a model in which CENP-N functions as a fidelity factor during centromeric replication and reveal that the CCAN network is considerably more dynamic than previously appreciated.
Eukaryotic Cell | 2005
Ronny Martin; Andrea Walther; Jürgen Wendland
ABSTRACT Formins are downstream effector proteins of Rho-type GTPases and are involved in the organization of the actin cytoskeleton and actin cable assembly at sites of polarized cell growth. Here we show using in vivo time-lapse microscopy that deletion of the Candida albicans formin homolog BNI1 results in polarity defects during yeast growth and hyphal stages. Deletion of the second C. albicans formin, BNR1, resulted in elongated yeast cells with cell separation defects but did not interfere with the ability of bnr1 cells to initiate and maintain polarized hyphal growth. Yeast bni1 cells were swollen, showed an increased random budding pattern, and had a severe defect in cytokinesis, with enlarged bud necks. Induction of hyphal development in bni1 cells resulted in germ tube formation but was halted at the step of polarity maintenance. Bni1-green fluorescent protein is found persistently at the hyphal tip and colocalizes with a structure resembling the Spitzenkörper of true filamentous fungi. Introduction of constitutively active ras1G13V in the bni1 strain or addition of cyclic AMP to the growth medium did not bypass bni1 hyphal growth defects. Similarly, these agents were not able to suppress hyphal growth defects in the wal1 mutant which is lacking the Wiskott-Aldrich syndrome protein (WASP) homolog. These results suggest that the maintenance of polarized hyphal growth in C. albicans requires coordinated regulation of two actin cytoskeletal pathways, including formin-mediated secretion and WASP-dependent endocytosis.
Nucleic Acids Research | 2015
Jörg Linde; Seána Duggan; Michael Weber; Fabian Horn; Patricia Sieber; Daniela Hellwig; Konstantin Riege; Manja Marz; Ronny Martin; Reinhard Guthke; Oliver Kurzai
Candida glabrata is the second most common pathogenic Candida species and has emerged as a leading cause of nosocomial fungal infections. Its reduced susceptibility to antifungal drugs and its close relationship to Saccharomyces cerevisiae make it an interesting research focus. Although its genome sequence was published in 2004, little is known about its transcriptional dynamics. Here, we provide a detailed RNA-Seq-based analysis of the transcriptomic landscape of C. glabrata in nutrient-rich media, as well as under nitrosative stress and during pH shift. Using RNA-Seq data together with state-of-the-art gene prediction tools, we refined the annotation of the C. glabrata genome and predicted 49 novel protein-coding genes. Of these novel genes, 14 have homologs in S. cerevisiae and six are shared with other Candida species. We experimentally validated four novel protein-coding genes of which two are differentially regulated during pH shift and interaction with human neutrophils, indicating a potential role in host–pathogen interaction. Furthermore, we identified 58 novel non-protein-coding genes, 38 new introns and condition-specific alternative splicing. Finally, our data suggest different patterns of adaptation to pH shift and nitrosative stress in C. glabrata, Candida albicans and S. cerevisiae and thus further underline a distinct evolution of virulence in yeast.
Eukaryotic Cell | 2004
Ronny Martin; Andrea Walther; Jürgen Wendland
ABSTRACT Cytoplasmic dynein is a microtubule-associated minus-end-directed motor protein. CaDYN1 encodes the single dynein heavy-chain gene of Candida albicans. The open reading frames of both alleles of CaDYN1 were completely deleted via a PCR-based approach. Cadyn1 mutants are viable but grow more slowly than the wild type. In vivo time-lapse microscopy was used to compare growth of wild-type (SC5314) and dyn1 mutant strains during yeast growth and after hyphal induction. During yeast-like growth, Cadyn1 strains formed chains of cells. Chromosomal TUB1-GFP and HHF1-GFP alleles were used both in wild-type and mutant strains to monitor the orientation of mitotic spindles and nuclear positioning in C. albicans. In vivo fluorescence time-lapse analyses with HHF1-GFP over several generations indicated defects in dyn1 cells in the realignment of spindles with the mother-daughter axis of yeast cells compared to that of the wild type. Mitosis in the dyn1 mutant, in contrast to that of wild-type yeast cells, was very frequently completed in the mother cells. Nevertheless, daughter nuclei were faithfully transported into the daughter cells, resulting in only a small number of multinucleate cells. Cadyn1 mutant strains responded to hypha-inducing media containing l-proline or serum with initial germ tube formation. Elongation of the hyphal tubes eventually came to a halt, and these tubes showed a defect in the tipward localization of nuclei. Using a heterozygous DYN1/dyn1 strain in which the remaining copy was controlled by the regulatable MAL2 promoter, we could switch between wild-type and mutant phenotypes depending on the carbon source, indicating that the observed mutant phenotypes were solely due to deletion of DYN1.
Yeast | 2007
Ronny Martin; Daniela Hellwig; Yvonne Schaub; Janine Bauer; Andrea Walther; Jürgen Wendland
PCR‐based techniques for directed gene alterations have become standard tools in Candida albicans. To help to increase the speed of functional analysis of Candida albicans genes, we previously constructed and updated a modular set of pFA‐plasmid vectors for PCR‐based gene targeting in C. albicans. Here we report the functional analyses of C. albicans ORFs whose homologues in S. cerevisiae are involved in endocytosis, to explore their potential involvement in polarized cell growth. Three C. albicans genes, ABP1, BZZ1 and EDE1, were found to be non‐essential. Yeast and hyphal morphogenesis were not affected by the individual deletions and the mutant strains appeared wild‐type‐like under the different growth conditions tested. On the other hand, deletion of both alleles of the C. albicans PAN1 homologue was not feasible. Promoter shut‐down experiments using a MET3p–PAN1/pan1 strain indicated severe growth defects and abolished endocytosis, indicating that PAN1 is an essential gene. Subcellular distribution of CaAbp1 and CaPan1 was analysed via GFP‐tagged proteins. Both proteins were found to localize at the cortex and at hyphal tips in a patch‐like manner, supporting their role in endocytosis. Localization patterns of Abp1 and Pan1, however, were distinct from that of the FM4‐64 stained Spitzenkörper. Copyright