Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosa Anna Iorio is active.

Publication


Featured researches published by Rosa Anna Iorio.


Biochemical Journal | 2010

An extracellular transglutaminase is required for apple pollen tube growth

Alessia Di Sandro; Stefano Del Duca; Elisabetta Verderio; Alan J. Hargreaves; Alessandra Scarpellini; Giampiero Cai; Mauro Cresti; Claudia Faleri; Rosa Anna Iorio; Shigehisa Hirose; Yutaka Furutani; Ian G. C. Coutts; Martin Griffin; Philip L.R. Bonner; Donatella Serafini-Fracassini

An extracellular form of the calcium-dependent protein-cross-linking enzyme TGase (transglutaminase) was demonstrated to be involved in the apical growth of Malus domestica pollen tube. Apple pollen TGase and its substrates were co-localized within aggregates on the pollen tube surface, as determined by indirect immunofluorescence staining and the in situ cross-linking of fluorescently labelled substrates. TGase-specific inhibitors and an anti-TGase monoclonal antibody blocked pollen tube growth, whereas incorporation of a recombinant fluorescent mammalian TGase substrate (histidine-tagged green fluorescent protein: His6-Xpr-GFP) into the growing tube wall enhanced tube length and germination, consistent with a role of TGase as a modulator of cell wall building and strengthening. The secreted pollen TGase catalysed the cross-linking of both PAs (polyamines) into proteins (released by the pollen tube) and His6-Xpr-GFP into endogenous or exogenously added substrates. A similar distribution of TGase activity was observed in planta on pollen tubes germinating inside the style, consistent with a possible additional role for TGase in the interaction between the pollen tube and the style during fertilization.


Amino Acids | 2012

Simulated environmental criticalities affect transglutaminase of Malus and Corylus pollens having different allergenic potential

Rosa Anna Iorio; Alessia Di Sandro; Roberta Paris; Giulia Pagliarani; Stefano Tartarini; Giampaolo Ricci; Donatella Serafini-Fracassini; Elisabetta Verderio; Stefano Del Duca

Increases in temperature and air pollution influence pollen allergenicity, which is responsible for the dramatic raise in respiratory allergies. To clarify possible underlying mechanisms, an anemophilous pollen (hazel, Corylus avellana), known to be allergenic, and an entomophilous one (apple, Malus domestica), the allergenicity of which was not known, were analysed. The presence also in apple pollen of known fruit allergens and their immunorecognition by serum of an allergic patient were preliminary ascertained, resulting also apple pollen potentially allergenic. Pollens were subjected to simulated stressful conditions, provided by changes in temperature, humidity, and copper and acid rain pollution. In the two pollens exposed to environmental criticalities, viability and germination were negatively affected and different transglutaminase (TGase) gel bands were differently immunodetected with the polyclonal antibody AtPng1p. The enzyme activity increased under stressful treatments and, along with its products, was found to be released outside the pollen with externalisation of TGase being predominant in C. avellana, whose grain presents a different cell wall composition with respect to that of M. domestica. A recombinant plant TGase (AtPng1p) stimulated the secreted phospholipase A2 (sPLA2) activity, that in vivo is present in human mucosa and is involved in inflammation. Similarly, stressed pollen, hazel pollen being the most efficient, stimulated to very different extent sPLA2 activity and putrescine conjugation to sPLA2. We propose that externalised pollen TGase could be one of the mediators of pollen allergenicity, especially under environmental stress induced by climate changes.


Plant Physiology | 2013

Distribution of Transglutaminase in Pear Pollen Tubes in Relation to Cytoskeleton and Membrane Dynamics

Stefano Del Duca; Claudia Faleri; Rosa Anna Iorio; Mauro Cresti; Donatella Serafini-Fracassini; Giampiero Cai

Distribution of a cell wall enzyme in pollen depends both on actin filaments and membrane trafficking. Transglutaminases (TGases) are ubiquitous enzymes that take part in a variety of cellular functions. In the pollen tube, cytoplasmic TGases are likely to be involved in the incorporation of primary amines at selected peptide-bound glutamine residues of cytosolic proteins (including actin and tubulin), while cell wall-associated TGases are believed to regulate pollen tube growth. Using immunological probes, we identified TGases associated with different subcellular compartments (cytosol, membranes, and cell walls). Binding of cytosolic TGase to actin filaments was shown to be Ca2+ dependent. The membrane TGase is likely associated with both Golgi-derived structures and the plasma membrane, suggesting a Golgi-based exocytotic delivery of TGase. Association of TGase with the plasma membrane was also confirmed by immunogold transmission electron microscopy. Immunolocalization of TGase indicated that the enzyme was present in the growing region of pollen tubes and that the enzyme colocalizes with cell wall markers. Bidimensional electrophoresis indicated that different TGase isoforms were present in distinct subcellular compartments, suggesting either different roles or different regulatory mechanisms of enzyme activity. The application of specific inhibitors showed that the distribution of TGase in different subcellular compartments was regulated by both membrane dynamics and cytoskeleton integrity, suggesting that delivery of TGase to the cell wall requires the transport of membranes along cytoskeleton filaments. Taken together, these data indicate that a cytoplasmic TGase interacts with the cytoskeleton, while a different TGase isoform, probably delivered via a membrane/cytoskeleton-based transport system, is secreted in the cell wall of pear (Pyrus communis) pollen tubes, where it might play a role in the regulation of apical growth.


PLOS ONE | 2013

Citrus Allergy from Pollen to Clinical Symptoms

Rosa Anna Iorio; Stefano Del Duca; Elisabetta Calamelli; Chiara Pula; Magda Lodolini; Fortuna Scamardella; Andrea Pession; Giampaolo Ricci

Allergy to citrus fruits is often associated with pollinosis and sensitization to other plants due to a phenomenon of cross-reactivity. The aims of the present study were to highlight the cross-reactivity among citrus and the major allergenic pollens/fruits, throughout clinical and molecular investigations, and to evaluate the sensitization frequency to citrus fruits in a population of children and adults with pollinosis. We found a relevant percentage of sensitisation (39%) to citrus fruits in the patients recruited and in all of them the IgE-mediated mechanism has been confirmed by the positive response to the prick-to-prick test. RT-PCR experiments showed the expression of Cit s 1, Cit s 3 and a profilin isoform, already described in apple, also in Citrus clementine pollen. Data of multiple sequence alignments demonstrated that Citrus allergens shared high percentage identity values with other clinically relevant species (i.e. Triticum aestivum, Malus domestica), confirming the possible cross-allergenicity citrus/grasses and citrus/apple. Finally, a novelty of the present work has been the expression of two phospholipaseA2 isoforms (PLA2 α and β) in Citrus as well as in Triticum pollens; being PLA2 able to generate pro-inflammatory factors, this enzyme could participate in the activation of the allergenic inflammatory cascade.


Amino Acids | 2012

Polyamines and transglutaminase activity are involved in compatible and self-incompatible pollination of Citrus grandis

Alessandra Gentile; Fabiana Antognoni; Rosa Anna Iorio; Gaetano Distefano; Giuseppina Las Casas; Stefano La Malfa; Donatella Serafini-Fracassini; Stefano Del Duca

Pollination of pummelo (Citrus grandis L. Osbeck) pistils has been studied in planta by adding compatible and self-incompatible (SI) pollen to the stigma surface. The pollen germination has been monitored inside the pistil by fluorescent microscopy showing SI altered morphologies with irregular depositions of callose in the tube walls, and heavy callose depositions in enlarged tips. The polyamine (PA) content as free, perchloric acid (PCA)-soluble and -insoluble fractions and transglutaminase (TGase) activity have been analyzed in order to deepen their possible involvement in the progamic phase of plant reproduction. The conjugated PAs in PCA-soluble fraction were definitely higher than the free and the PCA-insoluble forms, in both compatible and SI pollinated pistils. In pistils, pollination caused an early decrease of free PAs and increase of the bound forms. The SI pollination, showed highest values of PCA-soluble and -insoluble PAs with a maximum in concomitance with the pollen tube arrest. As TGase mediates some of the effects of PAs by covalently binding them to proteins, its activity, never checked before in Citrus, was examined with two different assays. In addition, the presence of glutamyl-PAs confirmed the enzyme assay data and excluded the possibility of a misinterpretation. The SI pollination caused an increase in TGase activity, whereas the compatible pollination caused its decrease. Similarly to bound PAs, the glutamyl-PAs and the enzyme activity peaked in the SI pollinated pistils in concomitance with the observed block of the pollen tube growth, suggesting an involvement of TGase in SI response.


Plant Biosystems | 2008

Visualisation of transglutaminase-mediated cross-linking activity in germinating pollen by laser confocal microscopy

Rosa Anna Iorio; Alessia Di Sandro; Alessandra Scarpellini; Stefano Del Duca; Donatella Serafini-Fracassini; Elisabetta Verderio

Abstract Transglutaminases (TGs) are a multigenic family of calcium-dependent protein cross-linking enzymes, which are present in animal and plant cells. We have previously reported the presence of TGs in the cytosol and, more recently, in the cell wall of Malus domestica pollen, where it may be involved in pollen germination and pollen–stylar interactions. In this report we describe a simple method for the in situ visualisation of TG activity in germinating pollen. The method is based on the incorporation, mediated by pollen TG, of a fluorescently labelled exogenous diamine substrate of TG (fluorescein-cadaverine) into endogenous pollen substrates. Following the in situ TG activity reaction, the presence of cross-linked pollen proteins was visualised in fixed specimens of germinated pollen by laser confocal microscopy. Our data indicate the presence of TG cross-linking activity mainly at the apical part of the pollen tube, in the region proximal to the grain, and in the pollen grain itself. In planta, the products of this activity may provide strength to the pollen tube migrating through the style.


Amino Acids | 2015

Dark-induced senescence of barley leaves involves activation of plastid transglutaminases.

Ewa Sobieszczuk-Nowicka; A. Zmienko; A. Samelak-Czajka; Magdalena Łuczak; M. Pietrowska-Borek; Rosa Anna Iorio; S. Del Duca; M. Figlerowicz; Jolanta Legocka

Transglutaminases (E.C. 2.3.2.13) catalyze the post-translational modification of proteins by establishing ε-(γ-glutamyl) lysine isopeptide bonds and by the covalent conjugation of polyamines to endo-glutamyl residues of proteins. In light of the confirmed role of transglutaminases in animal cell apoptosis and only limited information on the role of these enzymes in plant senescence, we decided to investigate the activity of chloroplast transglutaminases (ChlTGases) and the fate of chloroplast-associated polyamines in Hordeum vulgare L. ‘Nagrad’ leaves, where the senescence process was induced by darkness (day 0) and continued until chloroplast degradation (day 12). Using an anti-TGase antibody, we detected on a subcellular level, the ChlTGases that were associated with destacked/degraded thylakoid membranes, and beginning on day 5, were also found in the stroma. Colorimetric and radiometric assays revealed during senescence an increase in ChlTGases enzymatic activity. The MS/MS identification of plastid proteins conjugated with exogenous polyamines had shown that the ChlTGases are engaged in the post-translational modification of proteins involved in photosystem organization, stress response, and oxidation processes. We also computationally identified the cDNA of Hv-Png1-like, a barley homologue of the Arabidopsis AtPng1 gene. Its mRNA level was raised from days 3 to 10, indicating that transcriptional regulation controls the activity of barley ChlTGases. Together, the presented results deepen our knowledge of the mechanisms of the events happened in dark-induced senescence of barley leaves that might be activation of plastid transglutaminases.


Amino Acids | 2014

The plant extracellular transglutaminase: what mammal analogues tell

Stefano Del Duca; Elisabetta Verderio; Donatella Serafini-Fracassini; Rosa Anna Iorio; Giampiero Cai

The extracellular transglutaminases (TGs) in eukaryotes are responsible for the post-translational modification of proteins through different reactions, cross-linking being the best known. In higher plants, extracellular TG appears to be involved in roles similar to those performed by the mammalian counterparties. Since TGs are pleiotropic enzymes, to fully understand the role of plant enzymes it is possible to compare them with animal TGs, the most studied being TG of type 2 (TG2). The extracellular form of TG2 stabilizes the matrix and modulates the interaction of the integrin-fibronectin receptor, causing the adhesion of cells to the extracellular matrix; TG2 plays a role also in the pathogenicity. Extracellular TGs have also been identified in the cell wall of fungi, such as Candida and Saccharomyces, where they cross-link structural glycoproteins, and in Phytophthora, where they are involved in pathogenicity; in the alga Chlamydomonas, TGs link polyamines to glycoproteins thereby favouring the strengthening of cell wall. In higher plants, TG localized in the cell wall of flower petals appears to be involved in the structural reinforcement as well as senescence and cell death of the flower corolla. In the pollen cell wall an extracellular TG co-localizes with substrates and cross-linked products; it is required for the apical growth of pollen tubes. The pollen TG is also secreted into the extracellular matrix possibly allowing the migration of pollen tubes during fertilisation. Although pollen TGs seem to be secreted via vesicles transported along actin filaments, a different mechanism from the classical ER-Golgi pathway is possible, similar to TG2.


Amino Acids | 2013

Expression of different forms of transglutaminases by immature cells of Helianthus tuberosus sprout apices

Simone Beninati; Rosa Anna Iorio; Gianluca Tasco; Donatella Serafini-Fracassini; Rita Casadio; Stefano Del Duca


Acta Horticulturae | 2012

POST-TRANSLATIONAL MODIFICATION BY TRANSGLUTAMINASE OF PROTEINS INVOLVED IN PEAR SELF-INCOMPATIBILITY

Rosa Anna Iorio; Donatella Serafini-Fracassini; Iris Aloisi; S. Del Duca; P. De Franceschi; Luca Dondini; Silviero Sansavini; Giampiero Cai; Claudia Faleri

Collaboration


Dive into the Rosa Anna Iorio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge