Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Del Duca is active.

Publication


Featured researches published by Stefano Del Duca.


Annals of Botany | 2008

Transglutaminases: Widespread Cross-linking Enzymes in Plants

Donatella Serafini-Fracassini; Stefano Del Duca

BACKGROUND Transglutaminases have been studied in plants since 1987 in investigations aimed at interpreting some of the molecular mechanisms by which polyamines affect growth and differentiation. Transglutaminases are a widely distributed enzyme family catalysing a myriad of biological reactions in animals. In plants, the post-translational modification of proteins by polyamines forming inter- or intra-molecular cross-links has been the main transglutaminase reaction studied. CHARACTERISTICS OF PLANT TRANSGLUTAMINASES The few plant transglutaminases sequenced so far have little sequence homology with the best-known animal enzymes, except for the catalytic triad; however, they share a possible structural homology. Proofs of their catalytic activity are: (a) their ability to produce glutamyl-polyamine derivatives; (b) their recognition by animal transglutaminase antibodies; and (c) biochemical features such as calcium-dependency, etc. However, many of their fundamental biochemical and physiological properties still remain elusive. TRANSGLUTAMINASE ACTIVITY IS UBIQUITOUS It has been detected in algae and in angiosperms in different organs and sub-cellular compartments, chloroplasts being the best-studied organelles. POSSIBLE ROLES Possible roles concern the structural modification of specific protein substrates. In chloroplasts, transglutaminases appear to stabilize the photosynthetic complexes and Rubisco, being regulated by light and other factors, and possibly exerting a positive effect on photosynthesis and photo-protection. In the cytosol, they modify cytoskeletal proteins. Preliminary reports suggest an involvement in the cell wall construction/organization. Other roles appear to be related to fertilization, abiotic and biotic stresses, senescence and programmed cell death, including the hypersensitive reaction. CONCLUSIONS The widespread occurrence of transglutaminases activity in all organs and cell compartments studied suggests a relevance for their still incompletely defined physiological roles. At present, it is not possible to classify this enzyme family in plants owing to the scarcity of information on genes encoding them.


Biochemical Journal | 2009

Effects of post-translational modifications catalysed by pollen transglutaminase on the functional properties of microtubules and actin filaments.

Stefano Del Duca; Donatella Serafini-Fracassini; Philip L.R. Bonner; Mauro Cresti; Giampiero Cai

TGases (transglutaminases) are a class of calcium-dependent enzymes that catalyse the interactions between acyl acceptor glutamyl residues and amine donors, potentially making cross-links between proteins. To assess the activity of apple (Malus domestica) pollen TGase on the functional properties of actin and tubulin, TGase was prepared from apple pollen by hydrophobic- interaction chromatography and assayed on actin and tubulin purified from the same cell type. The enzyme catalysed the incorporation of putrescine into the cytoskeleton monomers. When tested on actin filaments, pollen TGase induced the formation of high-molecular-mass aggregates of actin. Use of fluorescein-cadaverine showed that the labelled polyamine was incorporated into actin by pollen TGase, similar to with guinea pig liver TGase. The pollen TGase also reduced the enzyme activity and the binding of myosin to TGase-treated actin filaments. Polymerization of tubulin in the presence of pollen TGase also yielded the formation of high-molecular-mass aggregates. Furthermore, the pollen TGase also affected the binding of kinesin to microtubules and reduced the motility of microtubules along kinesin-coated slides. These results indicate that the pollen TGase can control different properties of the pollen tube cytoskeleton (including the ability of actin and tubulin to assemble and their interaction with motor proteins) and consequently regulate the development of pollen tubes.


Plant Physiology | 2007

The Acropetal Wave of Developmental Cell Death of Tobacco Corolla Is Preceded by Activation of Transglutaminase in Different Cell Compartments

Massimiliano Della Mea; Francesca De Filippis; Valeria Genovesi; Donatella Serafini Fracassini; Stefano Del Duca

The activity of transglutaminase (TGase), an enzyme responsible for polyamine conjugation to proteins, was analyzed in relationship to developmental cell death (DCD) during the flower life span stages of the tobacco (Nicotiana tabacum) corolla. As the DCD exhibits an acropetal gradient, TGase was studied in corolla proximal, medial, and distal parts. TGase was immunorecognized by three TGase antibodies; the main 58-kD band decreased during corolla life, whereas a 38-kD band localized progressively from basal to distal parts. The former was present in the soluble, microsomal, plastidial (together with the 38-kD band), and cell wall fractions. The endogenous TGase activity increased during DCD reaching a maximum soon after the corolla opening. The activity maximum shifted from proximal to distal part, preceding the DCD acropetal pattern. A similar activity increase was observed by the exogenous TGase substrate (histidine6-Xpr-green fluorescent protein). Subcellular activities were detected in (1) the microsomes, where TGase activity is in general higher in the proximal part, peaking at the corolla opening; (2) the soluble fraction, where it is present only in the proximal part at senescence; (3) the plastids, where it shows an increasing trend; and (4) cell walls, prevailing in the distal part and progressively increasing. These data suggest a relationship between DCD and TGase; the latter, possibly released in the cell wall through the Golgi vesicles, could cooperate to cell wall strengthening, especially at the abscission zone and possibly during corolla shape change. The plastid TGase, stabilizing the photosystems, could sustain the energy requirements for the senescence progression.


Plant Physiology and Biochemistry | 2010

Spermine delays leaf senescence in Lactuca sativa and prevents the decay of chloroplast photosystems.

Donatella Serafini-Fracassini; Alessia Di Sandro; Stefano Del Duca

Aliphatic polyamines (PAs) are involved in the delay or prevention of plant senescence, but the molecular mechanism is not clarified. The hypothesis is put forward that one of the mechanisms by which PAs modulate leaf senescence and chlorophyll stabilisation could be due to their modification of chlorophyll-bound proteins, catalysed by transglutaminase (TGase, R-glutaminylpeptide-amine gamma-glutamyltransferase; E.C. 2.3.2.13). The retardation of leaf senescence of Lactuca sativa L. by spermine (Spm) was examined during induced cell death using leaf discs, or during the normal developmental senescence of leaves. Over 3 days, in leaf discs, Spm caused a delay of chlorophyll (Chl) decay, an increase of endogenous TGase activity, and a three-fold increase in chlorophyll content when supplied together with exogenous TGase. Spm was conjugated, via TGase, mainly to 22-30 kDa proteins. Long-term experiments over 5 days showed a general decrease in all three parameters with or without Spm. When leaves remained on the plants, Spm-sprayed leaves showed an increase in free Spm 1 h after spraying, mainly in the young leaves, whereas over longer periods (15 days) there was an increase in perchloric acid-soluble and -insoluble Spm metabolites. In senescing leaves, Spm prevented degradation of chlorophyll b and some proteins, and increased TGase activity, producing more PA-protein conjugates. Spm was translocated to chloroplasts and bound mainly onto fractions enriched in PSII, but also those enriched in PSI, whose light-harvesting complexes (LHC) sub-fractions contained TGase. Spm was conjugated by TGase mainly to LHCII, more markedly in the light. Immunodetection of TGase revealed multiple proteins in young leaves, possibly representing different TGase isoforms when TGase activity was high, whereas in already senescent leaves, when its activity decreased, one high-molecular-mass band was found, possibly because of enzyme polymerisation. Spm thus protected senescing Lactuca leaves from the decay of their chloroplast photosystem complexes. The senescence-delaying effects of Spm could be mediated by TGase, as TGase was re-activated to the level in young leaves following Spm treatment.


Biochemical Journal | 2010

An extracellular transglutaminase is required for apple pollen tube growth

Alessia Di Sandro; Stefano Del Duca; Elisabetta Verderio; Alan J. Hargreaves; Alessandra Scarpellini; Giampiero Cai; Mauro Cresti; Claudia Faleri; Rosa Anna Iorio; Shigehisa Hirose; Yutaka Furutani; Ian G. C. Coutts; Martin Griffin; Philip L.R. Bonner; Donatella Serafini-Fracassini

An extracellular form of the calcium-dependent protein-cross-linking enzyme TGase (transglutaminase) was demonstrated to be involved in the apical growth of Malus domestica pollen tube. Apple pollen TGase and its substrates were co-localized within aggregates on the pollen tube surface, as determined by indirect immunofluorescence staining and the in situ cross-linking of fluorescently labelled substrates. TGase-specific inhibitors and an anti-TGase monoclonal antibody blocked pollen tube growth, whereas incorporation of a recombinant fluorescent mammalian TGase substrate (histidine-tagged green fluorescent protein: His6-Xpr-GFP) into the growing tube wall enhanced tube length and germination, consistent with a role of TGase as a modulator of cell wall building and strengthening. The secreted pollen TGase catalysed the cross-linking of both PAs (polyamines) into proteins (released by the pollen tube) and His6-Xpr-GFP into endogenous or exogenously added substrates. A similar distribution of TGase activity was observed in planta on pollen tubes germinating inside the style, consistent with a possible additional role for TGase in the interaction between the pollen tube and the style during fertilization.


Amino Acids | 2009

Plant and animal transglutaminases: do similar functions imply similar structures?

Donatella Serafini-Fracassini; Massimiliano Della Mea; Gianluca Tasco; Rita Casadio; Stefano Del Duca

In plants the post-translational modification of proteins by polyamines catalysed by transglutaminases has been studied since 1987; it was identified by the production of glutamyl-polyamine derivatives, biochemical features, recognition by animal antibodies and modification of typical animal substrates. Transglutaminases are widespread in all plant organs and cell compartments studied until now, chloroplast being the most studied. Substrates are: photosynthetic complexes and Rubisco in chloroplasts, cytoskeleton and cell wall proteins. Roles either specific of plants or in common with animals are related to photosynthesis, fertilisation, stresses, senescence and programmed cell death, showing that the catalytic function is conserved across the kingdoms. AtPng1p, the first plant transglutaminase sequenced shows undetectable sequence homology to the animal enzymes, except for the catalytic triad. It is, however, endowed with a calcium-dependent activity that allowed us to build a three-dimensional model adopting as a template the animal tranglutaminase 2.


Journal of Plant Physiology | 2001

Acclimation of chloroplast transglutaminase to high NaClconcentration in a polyamine-deficient variant strain of Dunaliella salina and in its wild type

L. Dondini; Stefania Bonazzi; Stefano Del Duca; Anna Maria Bregoli; Donatella Serafini-Fracassini

Summary The wild type (Wt) and the polyamine-deficient strain (PA − vs) of the halotolerant Dunaliella salina were subjected to stress caused by 3.5 mol/L NaCl concentration. The chloroplasts were isolated and the molecular aspects of their reaction to salt stress were studied together with their recovery response to these hyper-saline conditions. In the Wt, the photosynthetic complexes were found to be severely affected by salt stress under light conditions. Transglutaminases, which are present in chloroplasts as two units of 25 and 50 kDa, were immunorecognized by antibodies raised against rat prostatic gland transglutaminase. The amount, in particular that of the 50 kDa unit, underwent an immediate change following hyper-saline stress. These concentration changes were found to coincide with variations in enzymic activity, which is also affected by the presence or absence of light. The PA − vs has a concentration of proteins and chlorophylls which is much lower than that of the Wt. In addition, the PA − vs appeared to be more severely affected by both salt and subculture stresses. Its recovery time was also longer. Its TGase activity increased after salt stress and was always higher in the light than in the dark, except soon after subculture, showing an additive stress effect of salt and light. In the PA − vs acclimated to high salinity, or immediately after stress application, the chloroplast content of chlorophyll a and b was considerably enhanced, like the TGase activity (by two-fold or more), and these changes exhibited almost coincident behaviours. Some transglutaminase substrates (proteins of 68, 55, 29 and 27 kDa) were found to be similar to those present in higher plants (thylakoid photosynthetic complexes and Rubisco). They were more markedly labelled by [1,4- 14 C] polyamines when the transglutaminase assay was performed in the light than in the dark, and much more in algae already acclimated to hyper-saline conditions than in those cultured in the optimal saline medium, or subjected to stress. The amount of 68 and 55 kDa polypeptides was particularly high in the 3.5 mol/L NaCl acclimated cells. The possible role of polyamine conjugation in the assembly of chloroplast proteins in cells affected by salt stress is discussed.


Frontiers in Plant Science | 2014

Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase

Stefano Del Duca; Donatella Serafini-Fracassini; Giampiero Cai

Research on polyamines (PAs) in plants laps a long way of about 50 years and many roles have been discovered for these aliphatic cations. PAs regulate cell division, differentiation, organogenesis, reproduction, dormancy-break and senescence, homeostatic adjustments in response to external stimuli and stresses. Nevertheless, the molecular mechanisms of their multiple activities are still matter of research. PAs are present in free and bound forms and interact with several important cell molecules; some of these interactions may occur by covalent linkages catalyzed by transglutaminase (TGase), giving rise to “cationization” or cross-links among specific proteins. Senescence and programmed cell death (PCD) can be delayed by PAs; in order to re-interpret some of these effects and to obtain new insights into their molecular mechanisms, their conjugation has been revised here. The TGase-mediated interactions between proteins and PAs are the main target of this review. After an introduction on the characteristics of this enzyme, on its catalysis and role in PCD in animals, the plant senescence and PCD models in which TGase has been studied, are presented: the corolla of naturally senescing or excised flowers, the leaves senescing, either excised or not, the pollen during self-incompatible pollination, the hypersensitive response and the tuber storage parenchyma during dormancy release. In all the models examined, TGase appears to be involved by a similar molecular mechanism as described during apoptosis in animal cells, even though several substrates are different. Its effect is probably related to the type of PCD, but mostly to the substrate to be modified in order to achieve the specific PCD program. As a cross-linker of PAs and proteins, TGase is an important factor involved in multiple, sometimes controversial, roles of PAs during senescence and PCD.


Frontiers in Plant Science | 2016

Polyamines in Pollen: From Microsporogenesis to Fertilization

Iris Aloisi; Giampiero Cai; Donatella Serafini-Fracassini; Stefano Del Duca

The entire pollen life span is driven by polyamine (PA) homeostasis, achieved through fine regulation of their biosynthesis, oxidation, conjugation, compartmentalization, uptake, and release. The critical role of PAs, from microsporogenesis to pollen–pistil interaction during fertilization, is suggested by high and dynamic transcript levels of PA biosynthetic genes, as well as by the activities of the corresponding enzymes. Moreover, exogenous supply of PAs strongly affects pollen maturation and pollen tube elongation. A reduction of endogenous free PAs impacts pollen viability both in the early stages of pollen development and during fertilization. A number of studies have demonstrated that PAs largely function by modulating transcription, by structuring pollen cell wall, by modulating protein (mainly cytoskeletal) assembly as well as by modulating the level of reactive oxygen species. Both free low-molecular weight aliphatic PAs, and PAs conjugated to proteins and hydroxyl-cinnamic acids take part in these complex processes. Here, we review both historical and recent evidence regarding molecular events underlying the role of PAs during pollen development. In the concluding remarks, the outstanding issues and directions for future research that will further clarify our understanding of PA involvement during pollen life are outlined.


Amino Acids | 2012

Simulated environmental criticalities affect transglutaminase of Malus and Corylus pollens having different allergenic potential

Rosa Anna Iorio; Alessia Di Sandro; Roberta Paris; Giulia Pagliarani; Stefano Tartarini; Giampaolo Ricci; Donatella Serafini-Fracassini; Elisabetta Verderio; Stefano Del Duca

Increases in temperature and air pollution influence pollen allergenicity, which is responsible for the dramatic raise in respiratory allergies. To clarify possible underlying mechanisms, an anemophilous pollen (hazel, Corylus avellana), known to be allergenic, and an entomophilous one (apple, Malus domestica), the allergenicity of which was not known, were analysed. The presence also in apple pollen of known fruit allergens and their immunorecognition by serum of an allergic patient were preliminary ascertained, resulting also apple pollen potentially allergenic. Pollens were subjected to simulated stressful conditions, provided by changes in temperature, humidity, and copper and acid rain pollution. In the two pollens exposed to environmental criticalities, viability and germination were negatively affected and different transglutaminase (TGase) gel bands were differently immunodetected with the polyclonal antibody AtPng1p. The enzyme activity increased under stressful treatments and, along with its products, was found to be released outside the pollen with externalisation of TGase being predominant in C. avellana, whose grain presents a different cell wall composition with respect to that of M. domestica. A recombinant plant TGase (AtPng1p) stimulated the secreted phospholipase A2 (sPLA2) activity, that in vivo is present in human mucosa and is involved in inflammation. Similarly, stressed pollen, hazel pollen being the most efficient, stimulated to very different extent sPLA2 activity and putrescine conjugation to sPLA2. We propose that externalised pollen TGase could be one of the mediators of pollen allergenicity, especially under environmental stress induced by climate changes.

Collaboration


Dive into the Stefano Del Duca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giampiero Cai

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip L.R. Bonner

Nottingham Trent University

View shared research outputs
Researchain Logo
Decentralizing Knowledge