Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosa Rosario is active.

Publication


Featured researches published by Rosa Rosario.


Journal of Clinical Investigation | 2008

Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE–/– mice

Evis Harja; De-xiu Bu; Barry I. Hudson; Jong Sun Chang; Xiaoping Shen; Kellie Hallam; Anastasia Z. Kalea; Yan Lu; Rosa Rosario; Sai Oruganti; Zana Nikolla; Dmitri Belov; Evanthia Lalla; Ravichandran Ramasamy; Shi Fang Yan; Ann Marie Schmidt

Endothelial dysfunction is a key triggering event in atherosclerosis. Following the entry of lipoproteins into the vessel wall, their rapid modification results in the generation of advanced glycation endproduct epitopes and subsequent infiltration of inflammatory cells. These inflammatory cells release receptor for advanced glycation endproduct (RAGE) ligands, specifically S100/calgranulins and high-mobility group box 1, which sustain vascular injury. Here, we demonstrate critical roles for RAGE and its ligands in vascular inflammation, endothelial dysfunction, and atherosclerotic plaque development in a mouse model of atherosclerosis, apoE-/- mice. Experiments in primary aortic endothelial cells isolated from mice and in cultured human aortic endothelial cells revealed the central role of JNK signaling in transducing the impact of RAGE ligands on inflammation. These data highlight unifying mechanisms whereby endothelial RAGE and its ligands mediate vascular and inflammatory stresses that culminate in atherosclerosis in the vulnerable vessel wall.


Diabetes | 2010

Deletion of the Receptor for Advanced Glycation End Products Reduces Glomerulosclerosis and Preserves Renal Function in the Diabetic OVE26 Mouse

Nina Reiniger; Kai Lau; Daren McCalla; Bonnie Eby; Bin Cheng; Yan Lu; Wu Qu; Nosirudeen Quadri; Radha Ananthakrishnan; Maryana Furmansky; Rosa Rosario; Fei Song; Vivek Rai; Alan D. Weinberg; Richard A. Friedman; Ravichandran Ramasamy; Ann Marie Schmidt

OBJECTIVE Previous studies showed that genetic deletion or pharmacological blockade of the receptor for advanced glycation end products (RAGE) prevents the early structural changes in the glomerulus associated with diabetic nephropathy. To overcome limitations of mouse models that lack the progressive glomerulosclerosis observed in humans, we studied the contribution of RAGE to diabetic nephropathy in the OVE26 type 1 mouse, a model of progressive glomerulosclerosis and decline of renal function. RESEARCH DESIGN AND METHODS We bred OVE26 mice with homozygous RAGE knockout (RKO) mice and examined structural changes associated with diabetic nephropathy and used inulin clearance studies and albumin:creatinine measurements to assess renal function. Transcriptional changes in the Tgf-β1 and plasminogen activator inhibitor 1 gene products were measured to investigate mechanisms underlying accumulation of mesangial matrix in OVE26 mice. RESULTS Deletion of RAGE in OVE26 mice reduced nephromegaly, mesangial sclerosis, cast formation, glomerular basement membrane thickening, podocyte effacement, and albuminuria. The significant 29% reduction in glomerular filtration rate observed in OVE26 mice was completely prevented by deletion of RAGE. Increased transcription of the genes for plasminogen activator inhibitor 1, Tgf-β1, Tgf-β–induced, and α1-(IV) collagen observed in OVE26 renal cortex was significantly reduced in OVE26 RKO kidney cortex. ROCK1 activity was significantly lower in OVE26 RKO compared with OVE26 kidney cortex. CONCLUSIONS These data provide compelling evidence for critical roles for RAGE in the pathogenesis of diabetic nephropathy and suggest that strategies targeting RAGE in long-term diabetes may prevent loss of renal function.


American Journal of Physiology-heart and Circulatory Physiology | 2008

RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model

Alexey Aleshin; Radha Ananthakrishnan; Qing Li; Rosa Rosario; Yan Lu; Wu Qu; Fei Song; Soliman Bakr; Matthias Szabolcs; Rui Liu; Shunichi Homma; Ann Marie Schmidt; Shi Fang Yan; Ravichandran Ramasamy

The receptor for advanced glycation end-products (RAGE) has been implicated in the pathogenesis of ischemia-reperfusion (I/R) injury in the isolated perfused heart. To test the hypothesis that RAGE-dependent mechanisms modulated responses to I/R in a murine model of transient occlusion and reperfusion of the left anterior descending coronary artery (LAD), we subjected male homozygous RAGE(-/-) mice and their wild-type age-matched littermates to 30 min of occlusion of the LAD followed by reperfusion. At 48 h of reperfusion, hematoxylin and eosin staining revealed significantly larger infarct size in wild-type versus RAGE(-/-) mice. Contractile function, as evaluated by echocardiography 48 h after reperfusion, revealed that fractional shortening was significantly higher in RAGE(-/-) versus wild-type mice. Plasma levels of creatine kinase were markedly decreased in RAGE(-/-) versus wild-type animals. Integral to the impact of RAGE deletion on diminished myocardial damage after infarction was significantly decreased apoptosis in the heart, as assessed by TUNEL staining, release of cytochrome c, and caspase-3 activity. Experiments investigating the impact of RAGE on early signaling pathways influencing myocardial ischemic injury revealed attenuation of JNK and STAT5 phosphorylation in RAGE(-/-) mouse hearts versus robust activation observed in wild-type mice upon ischemia and reperfusion. Solidifying the link to RAGE, these experiments revealed that infarction stimulated the rapid production of advanced glycation end-products in the heart. Thus, we tested the effect of ligand decoy soluble RAGE (sRAGE). Administration of sRAGE protected the myocardium from ischemic damage, similar to the effects observed in RAGE(-/-) mouse hearts. Taken together, these data implicate RAGE and its ligands in the pathogenesis of I/R injury and identify JNK and STAT signal transduction as central downstream effector pathways of the ligand-RAGE axis in the heart subjected to I/R injury.


Journal of The American Society of Nephrology | 2008

RAGE Mediates Podocyte Injury in Adriamycin-induced Glomerulosclerosis

Jiancheng Guo; Radha Ananthakrishnan; Wu Qu; Yan Lu; Nina Reiniger; Shan Zeng; Wanchao Ma; Rosa Rosario; Shi Fang Yan; Ravichandran Ramasamy; Ann Marie Schmidt

In the kidney, the receptor for advanced glycation end products (RAGE) is principally expressed in the podocyte at low levels, but is upregulated in both human and mouse glomerular diseases. Because podocyte injury is central to proteinuric states, such as the nephrotic syndrome, the murine adriamycin nephrosis model was used to explore the role of RAGE in podocyte damage. In this model, administration of the anthracycline antibiotic adriamycin provokes severe podocyte stress and glomerulosclerosis. In contrast to wild-type animals, adriamycin-treated RAGE-null mice were significantly protected from effacement of the podocyte foot processes, albuminuria, and glomerulosclerosis. Administration of adriamycin induced rapid generation of RAGE ligands, and treatment with soluble RAGE protected against podocyte injury and glomerulosclerosis. In vitro, incubation of RAGE-expressing murine podocytes with adriamycin stimulated AGE formation, and treatment with RAGE ligands rapidly activated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, via p44/p42 MAP kinase signaling, and upregulated pro-fibrotic growth factors. These data suggest that RAGE may contribute to the pathogenesis of podocyte injury in sclerosing glomerulopathies such as focal segmental glomerulosclerosis.


Journal of Hepatology | 2009

Receptor for advanced glycation end product (RAGE)-dependent modulation of early growth response-1 in hepatic ischemia/reperfusion injury.

Shan Zeng; Hao Dun; Nikalesh Ippagunta; Rosa Rosario; Qing Y. Zhang; Jay H. Lefkowitch; Shi F. Yan; Ann Marie Schmidt; Jean C. Emond

BACKGROUND/AIMS We previously showed that blockade of RAGE significantly attenuates hepatic ischemia/reperfusion (I/R) injury in mice. Here, we identify that early growth response-1 (Egr-1) is a downstream target of RAGE in hepatic I/R injury. METHODS Hepatic I/R was induced in male mice. Liver remnants were analyzed for induction of Egr-1 and cytokines, as well as regulation of apoptotic pathways after reperfusion. RESULTS Egr-1 was upregulated in the liver remnants after hepatic I/R injury and was suppressed by administration of soluble RAGE or deletion of the RAGE gene. RAGE-mediated increased expression of Egr-1 upregulates a central downstream gene, MIP2. In contrast, RAGE-stimulated Egr-1-independent pathways regulate TNF-alpha production and apoptosis in response to I/R. Consistent with these findings, phospho-p44/42 and phospho-JNK MAPK and c-Jun were strikingly suppressed in RAGE(-/-) versus WT mice, but not in Egr-1(-/-) mice. RAGE ligand HMGB1 was upregulated after I/R in the liver remnants. In vitro, incubation of RAGE-expressing liver dendritic cells (DCs) with recombinant HMGB-1 resulted in increased Egr-1 transcripts, in a manner suppressed by RAGE gene deletion, soluble RAGE and inhibitors of p44/p42 or JNK MAP kinase. CONCLUSIONS Suppression of Egr-1 may contribute to the protective mechanisms underlying the beneficial impact of RAGE blockade or deletion.


PLOS ONE | 2010

RAGE Modulates Hypoxia/Reoxygenation Injury in Adult Murine Cardiomyocytes via JNK and GSK-3β Signaling Pathways

Linshan Shang; Radha Ananthakrishnan; Qing Li; Nosirudeen Quadri; Mariane Abdillahi; Zhengbin Zhu; Wu Qu; Rosa Rosario; Fatouma Touré; Shi Fang Yan; Ann Marie Schmidt; Ravichandran Ramasamy

Background Advanced glycation end-products (AGEs) have been implicated in diverse pathological settings including diabetes, inflammation and acute ischemia/reperfusion injury in the heart. AGEs interact with the receptor for AGEs (RAGE) and transduce signals through activation of MAPKs and proapoptotic pathways. In the current study, adult cardiomyocytes were studied in an in vitro ischemia/reperfusion (I/R) injury model to delineate the molecular mechanisms underlying RAGE-mediated injury due to hypoxia/reoxygenation (H/R). Methodology/Principal Findings Cardiomyocytes isolated from adult wild-type (WT), homozygous RAGE-null (RKO), and WT mice treated with soluble RAGE (sRAGE) were subjected to hypoxia for 30 minutes alone or followed by reoxygenation for 1 hour. In specific experiments, RAGE ligand carboxymethyllysine (CML)-AGE (termed “CML” in this manuscript) was evaluated in vitro. LDH, a marker of cellular injury, was assayed in the supernatant in the presence or absence of signaling inhibitor-treated cardiomyocytes. Cardiomyocyte levels of heterogeneous AGEs were measured using ELISA. A pronounced increase in RAGE expression along with AGEs was observed in H/R vs. normoxia in WT cardiomyocytes. WT cardiomyocytes after H/R displayed increased LDH release compared to RKO or sRAGE-treated cardiomyocytes. Our results revealed significant increases in phospho-JNK in WT cardiomyocytes after H/R. In contrast, neither RKO nor sRAGE-treated cardiomyocytes exhibited increased phosphorylation of JNK after H/R stress. The impact of RAGE deletion on GSK-3β phosphorylation in the cardiomyocytes subjected to H/R revealed significantly higher levels of phospho-GSK-3β/total GSK-3β in RKO, as well as in sRAGE-treated cardiomyocytes versus WT cardiomyocytes after H/R. Further investigation established a key role for Akt, which functions upstream of GSK-3β, in modulating H/R injury in adult cardiomyocytes. Conclusions/Significance These data illustrate key roles for RAGE-ligand interaction in the pathogenesis of cardiomyocyte injury induced by hypoxia/reoxygenation and indicate that the effects of RAGE are mediated by JNK activation and dephosphorylation of GSK-3β. The outcome in this study lends further support to the potential use of RAGE blockade as an adjunctive therapy for protection of the ischemic heart.


Journal of Biological Chemistry | 2010

Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling and Up-regulation of Egr-1 in Hypoxic Macrophages

Yunlu Xu; Fatouma Touré; Wu Qu; Lili Lin; Fei Song; Xiaoping Shen; Rosa Rosario; Joel Garcia; Ann Marie Schmidt; Shi-Fang Yan

Receptor for advanced glycation end product (RAGE)-dependent signaling has been implicated in ischemia/reperfusion injury in the heart, lung, liver, and brain. Because macrophages contribute to vascular perturbation and tissue injury in hypoxic settings, we tested the hypothesis that RAGE regulates early growth response-1 (Egr-1) expression in hypoxia-exposed macrophages. Molecular analysis, including silencing of RAGE, or blockade of RAGE with sRAGE (the extracellular ligand-binding domain of RAGE), anti-RAGE IgG, or anti-AGE IgG in THP-1 cells, and genetic deletion of RAGE in peritoneal macrophages, revealed that hypoxia-induced up-regulation of Egr-1 is mediated by RAGE signaling. In addition, the observation of increased cellular release of RAGE ligand AGEs in hypoxic THP-1 cells suggests that recruitment of RAGE in hypoxia is stimulated by rapid production of RAGE ligands in this setting. Finally, we show that mDia-1, previously shown to interact with the RAGE cytoplasmic domain, is essential for hypoxia-stimulated regulation of Egr-1, at least in part through protein kinase C βII, ERK1/2, and c-Jun NH2-terminal kinase signaling triggered by RAGE ligands. Our findings highlight a novel mechanism by which an extracellular signal initiated by RAGE ligand AGEs regulates Egr-1 in a manner requiring mDia-1.


Journal of Experimental Medicine | 2012

Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling

Vivek Rai; Fatouma Touré; Seth Chitayat; Renjun Pei; Fei Song; Qing Li; Jinghua Zhang; Rosa Rosario; Ravichandran Ramasamy; Walter J. Chazin; Ann Marie Schmidt

RAGE is required for LPA-mediated vascular signaling and tumorigenesis


Diabetes | 2014

RAGE Regulates the Metabolic and Inflammatory Response to High Fat Feeding in Mice

Fei Song; Carmen Hurtado del Pozo; Rosa Rosario; Yu Shan Zou; Radha Ananthakrishnan; Xiaoyuan Xu; Payal R. Patel; Vivian M. Benoit; Shi Fang Yan; Huilin Li; Richard A. Friedman; Jason K. Kim; Ravichandran Ramasamy; Anthony W. Ferrante; Ann Marie Schmidt

In mammals, changes in the metabolic state, including obesity, fasting, cold challenge, and high-fat diets (HFDs), activate complex immune responses. In many strains of rodents, HFDs induce a rapid systemic inflammatory response and lead to obesity. Little is known about the molecular signals required for HFD-induced phenotypes. We studied the function of the receptor for advanced glycation end products (RAGE) in the development of phenotypes associated with high-fat feeding in mice. RAGE is highly expressed on immune cells, including macrophages. We found that high-fat feeding induced expression of RAGE ligand HMGB1 and carboxymethyllysine-advanced glycation end product epitopes in liver and adipose tissue. Genetic deficiency of RAGE prevented the effects of HFD on energy expenditure, weight gain, adipose tissue inflammation, and insulin resistance. RAGE deficiency had no effect on genetic forms of obesity caused by impaired melanocortin signaling. Hematopoietic deficiency of RAGE or treatment with soluble RAGE partially protected against peripheral HFD-induced inflammation and weight gain. These findings demonstrate that high-fat feeding induces peripheral inflammation and weight gain in a RAGE-dependent manner, providing a foothold in the pathways that regulate diet-induced obesity and offering the potential for therapeutic intervention.


Diabetes | 2013

RAGE Deficiency Improves Postinjury Sciatic Nerve Regeneration in Type 1 Diabetic Mice

Judyta K. Juranek; Matthew S. Geddis; Fei Song; Jinghua Zhang; Jose Garcia; Rosa Rosario; Shi Fang Yan; Thomas Brannagan; Ann Marie Schmidt

Peripheral neuropathy and insensate limbs and digits cause significant morbidity in diabetic individuals. Previous studies showed that deletion of the receptor for advanced end-glycation products (RAGE) in mice was protective in long-term diabetic neuropathy. Here, we tested the hypothesis that RAGE suppresses effective axonal regeneration in superimposed acute peripheral nerve injury attributable to tissue-damaging inflammatory responses. We report that deletion of RAGE, particularly in diabetic mice, resulted in significantly higher myelinated fiber densities and conduction velocities consequent to acute sciatic nerve crush compared with wild-type control animals. Consistent with key roles for RAGE-dependent inflammation, reconstitution of diabetic wild-type mice with RAGE-null versus wild-type bone marrow resulted in significantly improved axonal regeneration and restoration of function. Diabetic RAGE-null mice displayed higher numbers of invading macrophages in the nerve segments postcrush compared with wild-type animals, and these macrophages in diabetic RAGE-null mice displayed greater M2 polarization. In vitro, treatment of wild-type bone marrow–derived macrophages with advanced glycation end products (AGEs), which accumulate in diabetic nerve tissue, increased M1 and decreased M2 gene expression in a RAGE-dependent manner. Blockade of RAGE may be beneficial in the acute complications of diabetic neuropathy, at least in part, via upregulation of regeneration signals.

Collaboration


Dive into the Rosa Rosario's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Lu

Columbia University

View shared research outputs
Researchain Logo
Decentralizing Knowledge