Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Radha Ananthakrishnan is active.

Publication


Featured researches published by Radha Ananthakrishnan.


Circulation | 2006

Receptor for Advanced-Glycation End Products Key Modulator of Myocardial Ischemic Injury

Loredana G. Bucciarelli; Michiyo Kaneko; Radha Ananthakrishnan; Evis Harja; Larisse K. Lee; Yuying C. Hwang; Shulamit Lerner; Soliman Bakr; Qing Li; Yan Lu; Fei Song; Wu Qu; Teodoro Gomez; Yu Shan Zou; Shi Fang Yan; Ann Marie Schmidt; Ravichandran Ramasamy

Background— The beneficial effects of reperfusion therapies have been limited by the amount of ischemic damage that occurs before reperfusion. To enable development of interventions to reduce cell injury, our research has focused on understanding mechanisms involved in cardiac cell death after ischemia/reperfusion (I/R) injury. In this context, our laboratory has been investigating the role of the receptor for advanced-glycation end products (RAGE) in myocardial I/R injury. Methods and Results— In this study we tested the hypothesis that RAGE is a key modulator of I/R injury in the myocardium. In ischemic rat hearts, expression of RAGE and its ligands was significantly enhanced. Pretreatment of rats with sRAGE, a decoy soluble part of RAGE receptor, reduced ischemic injury and improved functional recovery of myocardium. To specifically dissect the impact of RAGE, hearts from homozygous RAGE-null mice were isolated, perfused, and subjected to I/R. RAGE-null mice were strikingly protected from the adverse impact of I/R injury in the heart, as indicated by decreased release of LDH, improved functional recovery, and increased adenosine triphosphate (ATP). In rats and mice, activation of the RAGE axis was associated with increases in inducible nitric oxide synthase expression and levels of nitric oxide, cyclic guanosine monophosphate (cGMP), and nitrotyrosine. Conclusions— These findings demonstrate novel and key roles for RAGE in I/R injury in the heart. The findings also demonstrate that the interaction of RAGE with advanced-glycation end products affects myocardial energy metabolism and function during I/R.


Diabetes | 2010

Deletion of the Receptor for Advanced Glycation End Products Reduces Glomerulosclerosis and Preserves Renal Function in the Diabetic OVE26 Mouse

Nina Reiniger; Kai Lau; Daren McCalla; Bonnie Eby; Bin Cheng; Yan Lu; Wu Qu; Nosirudeen Quadri; Radha Ananthakrishnan; Maryana Furmansky; Rosa Rosario; Fei Song; Vivek Rai; Alan D. Weinberg; Richard A. Friedman; Ravichandran Ramasamy; Ann Marie Schmidt

OBJECTIVE Previous studies showed that genetic deletion or pharmacological blockade of the receptor for advanced glycation end products (RAGE) prevents the early structural changes in the glomerulus associated with diabetic nephropathy. To overcome limitations of mouse models that lack the progressive glomerulosclerosis observed in humans, we studied the contribution of RAGE to diabetic nephropathy in the OVE26 type 1 mouse, a model of progressive glomerulosclerosis and decline of renal function. RESEARCH DESIGN AND METHODS We bred OVE26 mice with homozygous RAGE knockout (RKO) mice and examined structural changes associated with diabetic nephropathy and used inulin clearance studies and albumin:creatinine measurements to assess renal function. Transcriptional changes in the Tgf-β1 and plasminogen activator inhibitor 1 gene products were measured to investigate mechanisms underlying accumulation of mesangial matrix in OVE26 mice. RESULTS Deletion of RAGE in OVE26 mice reduced nephromegaly, mesangial sclerosis, cast formation, glomerular basement membrane thickening, podocyte effacement, and albuminuria. The significant 29% reduction in glomerular filtration rate observed in OVE26 mice was completely prevented by deletion of RAGE. Increased transcription of the genes for plasminogen activator inhibitor 1, Tgf-β1, Tgf-β–induced, and α1-(IV) collagen observed in OVE26 renal cortex was significantly reduced in OVE26 RKO kidney cortex. ROCK1 activity was significantly lower in OVE26 RKO compared with OVE26 kidney cortex. CONCLUSIONS These data provide compelling evidence for critical roles for RAGE in the pathogenesis of diabetic nephropathy and suggest that strategies targeting RAGE in long-term diabetes may prevent loss of renal function.


American Journal of Physiology-heart and Circulatory Physiology | 2008

RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model

Alexey Aleshin; Radha Ananthakrishnan; Qing Li; Rosa Rosario; Yan Lu; Wu Qu; Fei Song; Soliman Bakr; Matthias Szabolcs; Rui Liu; Shunichi Homma; Ann Marie Schmidt; Shi Fang Yan; Ravichandran Ramasamy

The receptor for advanced glycation end-products (RAGE) has been implicated in the pathogenesis of ischemia-reperfusion (I/R) injury in the isolated perfused heart. To test the hypothesis that RAGE-dependent mechanisms modulated responses to I/R in a murine model of transient occlusion and reperfusion of the left anterior descending coronary artery (LAD), we subjected male homozygous RAGE(-/-) mice and their wild-type age-matched littermates to 30 min of occlusion of the LAD followed by reperfusion. At 48 h of reperfusion, hematoxylin and eosin staining revealed significantly larger infarct size in wild-type versus RAGE(-/-) mice. Contractile function, as evaluated by echocardiography 48 h after reperfusion, revealed that fractional shortening was significantly higher in RAGE(-/-) versus wild-type mice. Plasma levels of creatine kinase were markedly decreased in RAGE(-/-) versus wild-type animals. Integral to the impact of RAGE deletion on diminished myocardial damage after infarction was significantly decreased apoptosis in the heart, as assessed by TUNEL staining, release of cytochrome c, and caspase-3 activity. Experiments investigating the impact of RAGE on early signaling pathways influencing myocardial ischemic injury revealed attenuation of JNK and STAT5 phosphorylation in RAGE(-/-) mouse hearts versus robust activation observed in wild-type mice upon ischemia and reperfusion. Solidifying the link to RAGE, these experiments revealed that infarction stimulated the rapid production of advanced glycation end-products in the heart. Thus, we tested the effect of ligand decoy soluble RAGE (sRAGE). Administration of sRAGE protected the myocardium from ischemic damage, similar to the effects observed in RAGE(-/-) mouse hearts. Taken together, these data implicate RAGE and its ligands in the pathogenesis of I/R injury and identify JNK and STAT signal transduction as central downstream effector pathways of the ligand-RAGE axis in the heart subjected to I/R injury.


International Journal of Molecular Sciences | 2013

Radical Roles for RAGE in the Pathogenesis of Oxidative Stress in Cardiovascular Diseases and Beyond

Gurdip Daffu; Carmen Hurtado del Pozo; Karen M. O’Shea; Radha Ananthakrishnan; Ravichandran Ramasamy; Ann Marie Schmidt

Oxidative stress is a central mechanism by which the receptor for advanced glycation endproducts (RAGE) mediates its pathological effects. Multiple experimental inquiries in RAGE-expressing cultured cells have demonstrated that ligand-RAGE interaction mediates generation of reactive oxygen species (ROS) and consequent downstream signal transduction and regulation of gene expression. The primary mechanism by which RAGE generates oxidative stress is via activation of NADPH oxidase; amplification mechanisms in the mitochondria may further drive ROS production. Recent studies indicating that the cytoplasmic domain of RAGE binds to the formin mDia1 provide further support for the critical roles of this pathway in oxidative stress; mDia1 was required for activation of rac1 and NADPH oxidase in primary murine aortic smooth muscle cells treated with RAGE ligand S100B. In vivo, in multiple distinct disease models in animals, RAGE action generates oxidative stress and modulates cellular/tissue fate in range of disorders, such as in myocardial ischemia, atherosclerosis, and aneurysm formation. Blockade or genetic deletion of RAGE was shown to be protective in these settings. Indeed, beyond cardiovascular disease, evidence is accruing in human subjects linking levels of RAGE ligands and soluble RAGE to oxidative stress in disorders such as doxorubicin toxicity, acetaminophen toxicity, neurodegeneration, hyperlipidemia, diabetes, preeclampsia, rheumatoid arthritis and pulmonary fibrosis. Blockade of RAGE signal transduction may be a key strategy for the prevention of the deleterious consequences of oxidative stress, particularly in chronic disease.


Diabetes | 2008

RAGE and Modulation of Ischemic Injury in the Diabetic Myocardium

Loredana G. Bucciarelli; Radha Ananthakrishnan; Yuying C. Hwang; Michiyo Kaneko; Fei Song; David R. Sell; Christopher Strauch; Vincent M. Monnier; Shi Fang Yan; Ann Marie Schmidt; Ravichandran Ramasamy

OBJECTIVE—Subjects with diabetes experience an increased risk of myocardial infarction and cardiac failure compared with nondiabetic age-matched individuals. The receptor for advanced glycation end products (RAGE) is upregulated in diabetic tissues. In this study, we tested the hypothesis that RAGE affected ischemia/reperfusion (I/R) injury in the diabetic myocardium. In diabetic rat hearts, expression of RAGE and its ligands was enhanced and localized particularly to both endothelial cells and mononuclear phagocytes. RESEARCH DESIGN AND METHODS—To specifically dissect the impact of RAGE, homozygous RAGE-null mice and transgenic (Tg) mice expressing cytoplasmic domain-deleted RAGE (DN RAGE), in which RAGE-dependent signal transduction was deficient in endothelial cells or mononuclear phagocytes, were rendered diabetic with streptozotocin. Isolated perfused hearts were subjected to I/R. RESULTS—Diabetic RAGE-null mice were significantly protected from the adverse impact of I/R injury in the heart, as indicated by decreased release of LDH and lower glycoxidation products carboxymethyl-lysine (CML) and pentosidine, improved functional recovery, and increased ATP. In diabetic Tg mice expressing DN RAGE in endothelial cells or mononuclear phagocytes, markers of ischemic injury and CML were significantly reduced, and levels of ATP were increased in heart tissue compared with littermate diabetic controls. Furthermore, key markers of apoptosis, caspase-3 activity and cytochrome c release, were reduced in the hearts of diabetic RAGE-modified mice compared with wild-type diabetic littermates in I/R. CONCLUSIONS—These findings demonstrate novel and key roles for RAGE in I/R injury in the diabetic heart.


Journal of The American Society of Nephrology | 2008

RAGE Mediates Podocyte Injury in Adriamycin-induced Glomerulosclerosis

Jiancheng Guo; Radha Ananthakrishnan; Wu Qu; Yan Lu; Nina Reiniger; Shan Zeng; Wanchao Ma; Rosa Rosario; Shi Fang Yan; Ravichandran Ramasamy; Ann Marie Schmidt

In the kidney, the receptor for advanced glycation end products (RAGE) is principally expressed in the podocyte at low levels, but is upregulated in both human and mouse glomerular diseases. Because podocyte injury is central to proteinuric states, such as the nephrotic syndrome, the murine adriamycin nephrosis model was used to explore the role of RAGE in podocyte damage. In this model, administration of the anthracycline antibiotic adriamycin provokes severe podocyte stress and glomerulosclerosis. In contrast to wild-type animals, adriamycin-treated RAGE-null mice were significantly protected from effacement of the podocyte foot processes, albuminuria, and glomerulosclerosis. Administration of adriamycin induced rapid generation of RAGE ligands, and treatment with soluble RAGE protected against podocyte injury and glomerulosclerosis. In vitro, incubation of RAGE-expressing murine podocytes with adriamycin stimulated AGE formation, and treatment with RAGE ligands rapidly activated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, via p44/p42 MAP kinase signaling, and upregulated pro-fibrotic growth factors. These data suggest that RAGE may contribute to the pathogenesis of podocyte injury in sclerosing glomerulopathies such as focal segmental glomerulosclerosis.


Cardiovascular Research | 1996

Specific mitochondrial DNA deletions in idiopathic dilated cardiomyopathy

José Marín-García; Michael J. Goldenthal; Radha Ananthakrishnan; Mary Ella Pierpont; F. Jay Fricker; Steven E. Lipshultz; Antonio R. Perez-Atayde

OBJECTIVE Structural changes in human mitochondrial DNA (mtDNA) have been implicated in a number of clinical conditions with dysfunctions in oxidative phosphorylation called OX-PHOS diseases, some of which have cardiac involvement. The objective of this study was to assess the frequency and extent of specific mitochondrial DNA deletions in idiopathic dilated cardiomyopathy. METHODS DNA extracted from tissue derived from the left ventricle of 41 patients with idiopathic dilated cardiomyopathy and 17 controls was amplified by polymerase chain reaction using specific primers to assess the incidence and proportion of 5-kb and 7.4-kb deletions in mitochondrial DNA. RESULTS In reactions using primers to detect the 5-kb deletion, an amplified product of 593 bp was found in low abundance relative to undeleted mitochondrial DNA but with high frequency in a number of controls and patients. A second deletion of 7.4 kb in size was also frequently present in controls and patients. In contrast to previous reports, these deletions were found to be present in both controls and in cardiomyopathic patients, 18 years and younger, including several infants. The 7.4-kb deletion was prominently increased in both frequency and in its proportion relative to undeleted mitochondrial DNA in patients 40 years and older with idiopathic dilated cardiomyopathy. CONCLUSIONS At variance with current literature our study reports a significant presence of both 5 and 7.4-kb deletions in the young and a higher frequency and quantity of the 7.4-kb deletion in the older cardiomyopathic patients in comparison with controls. The increased accumulation of the 7.4-kb deletion as both a function of aging and cardiomyopathy is suggestive that this specific mitochondrial DNA deletion arises more likely as an effect of heart dysfunction rather than as a primary cause of cardiomyopathy.


PLOS ONE | 2010

RAGE Modulates Hypoxia/Reoxygenation Injury in Adult Murine Cardiomyocytes via JNK and GSK-3β Signaling Pathways

Linshan Shang; Radha Ananthakrishnan; Qing Li; Nosirudeen Quadri; Mariane Abdillahi; Zhengbin Zhu; Wu Qu; Rosa Rosario; Fatouma Touré; Shi Fang Yan; Ann Marie Schmidt; Ravichandran Ramasamy

Background Advanced glycation end-products (AGEs) have been implicated in diverse pathological settings including diabetes, inflammation and acute ischemia/reperfusion injury in the heart. AGEs interact with the receptor for AGEs (RAGE) and transduce signals through activation of MAPKs and proapoptotic pathways. In the current study, adult cardiomyocytes were studied in an in vitro ischemia/reperfusion (I/R) injury model to delineate the molecular mechanisms underlying RAGE-mediated injury due to hypoxia/reoxygenation (H/R). Methodology/Principal Findings Cardiomyocytes isolated from adult wild-type (WT), homozygous RAGE-null (RKO), and WT mice treated with soluble RAGE (sRAGE) were subjected to hypoxia for 30 minutes alone or followed by reoxygenation for 1 hour. In specific experiments, RAGE ligand carboxymethyllysine (CML)-AGE (termed “CML” in this manuscript) was evaluated in vitro. LDH, a marker of cellular injury, was assayed in the supernatant in the presence or absence of signaling inhibitor-treated cardiomyocytes. Cardiomyocyte levels of heterogeneous AGEs were measured using ELISA. A pronounced increase in RAGE expression along with AGEs was observed in H/R vs. normoxia in WT cardiomyocytes. WT cardiomyocytes after H/R displayed increased LDH release compared to RKO or sRAGE-treated cardiomyocytes. Our results revealed significant increases in phospho-JNK in WT cardiomyocytes after H/R. In contrast, neither RKO nor sRAGE-treated cardiomyocytes exhibited increased phosphorylation of JNK after H/R stress. The impact of RAGE deletion on GSK-3β phosphorylation in the cardiomyocytes subjected to H/R revealed significantly higher levels of phospho-GSK-3β/total GSK-3β in RKO, as well as in sRAGE-treated cardiomyocytes versus WT cardiomyocytes after H/R. Further investigation established a key role for Akt, which functions upstream of GSK-3β, in modulating H/R injury in adult cardiomyocytes. Conclusions/Significance These data illustrate key roles for RAGE-ligand interaction in the pathogenesis of cardiomyocyte injury induced by hypoxia/reoxygenation and indicate that the effects of RAGE are mediated by JNK activation and dephosphorylation of GSK-3β. The outcome in this study lends further support to the potential use of RAGE blockade as an adjunctive therapy for protection of the ischemic heart.


Journal of Cardiac Failure | 1995

Impaired mitochondrial function in idiopathic dilated cardiomyopathy: Biochemical and molecular analysis

José Marín-García; Michael J. Goldenthal; Mary Ella Pierpont; Radha Ananthakrishnan

Mitochondrial defects at the biochemical and molecular levels are increasingly recognized in diseases involving the heart. The objective of this study was to assess the frequency and extent of mitochondrial defects in idiopathic dilated cardiomyopathy. Left ventricular tissues of 27 patients with idiopathic dilated cardiomyopathy undergoing orthotopic cardiac transplantation because of severe cardiac failure were examined to assess the specific activity levels of mitochondrial respiratory enzymes and changes in mtDNA structure and copy number. Abnormal specific activities of several mitochondrial enzymes were found in 55% of the cardiomyopathic tissues examined (15 patients), with six patients displaying single enzyme defects, including five in complex III and one in complex I. Multiple mitochondrial enzyme defects were found in nine patients, with the most frequent combination of defects seen in complex III and complex IV (5 cases). These enzymatic changes were shown not to be accompanied by changes in mtDNA copy number. In seven cases, however, including three young adults, there was a marked decrease in the levels of polymerase chain reaction products derived from specific mtDNA regions, which may be an indication of specific mtDNA damage. Specific mitochondrial abnormalities are frequently found in idiopathic dilated cardiomyopathy, with a variety of mitochondrial loci affected. These findings are not age dependent.


Diabetes | 2014

RAGE Regulates the Metabolic and Inflammatory Response to High Fat Feeding in Mice

Fei Song; Carmen Hurtado del Pozo; Rosa Rosario; Yu Shan Zou; Radha Ananthakrishnan; Xiaoyuan Xu; Payal R. Patel; Vivian M. Benoit; Shi Fang Yan; Huilin Li; Richard A. Friedman; Jason K. Kim; Ravichandran Ramasamy; Anthony W. Ferrante; Ann Marie Schmidt

In mammals, changes in the metabolic state, including obesity, fasting, cold challenge, and high-fat diets (HFDs), activate complex immune responses. In many strains of rodents, HFDs induce a rapid systemic inflammatory response and lead to obesity. Little is known about the molecular signals required for HFD-induced phenotypes. We studied the function of the receptor for advanced glycation end products (RAGE) in the development of phenotypes associated with high-fat feeding in mice. RAGE is highly expressed on immune cells, including macrophages. We found that high-fat feeding induced expression of RAGE ligand HMGB1 and carboxymethyllysine-advanced glycation end product epitopes in liver and adipose tissue. Genetic deficiency of RAGE prevented the effects of HFD on energy expenditure, weight gain, adipose tissue inflammation, and insulin resistance. RAGE deficiency had no effect on genetic forms of obesity caused by impaired melanocortin signaling. Hematopoietic deficiency of RAGE or treatment with soluble RAGE partially protected against peripheral HFD-induced inflammation and weight gain. These findings demonstrate that high-fat feeding induces peripheral inflammation and weight gain in a RAGE-dependent manner, providing a foothold in the pathways that regulate diet-induced obesity and offering the potential for therapeutic intervention.

Collaboration


Dive into the Radha Ananthakrishnan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wu Qu

Columbia University

View shared research outputs
Researchain Logo
Decentralizing Knowledge