Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosalinda Bruno is active.

Publication


Featured researches published by Rosalinda Bruno.


Reproductive Biology and Endocrinology | 2009

Human male gamete endocrinology: 1alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates different aspects of human sperm biology and metabolism

Saveria Aquila; Carmela Guido; Emilia Middea; Ida Perrotta; Rosalinda Bruno; Michele Pellegrino; Sebastiano Andò

BackgroundA wider biological role of 1alpha,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the active metabolite of vitamin D3, in tissues not primarily related to mineral metabolism was suggested. Recently, we evidenced the ultrastructural localization the 1,25(OH)2D3 receptor in the human sperm. However, the 1,25(OH)2D3 action in human male reproduction has not yet been clarified.Methods and ResultsBy RT-PCR, Western blot and Immunofluorescence techniques, we demonstrated that human sperm expresses the 1,25(OH)2D3 receptor (VDR). Besides, 25(OH)D3-1 alpha-hydroxylase, evidenced by Western blot analysis, indicated that in sperm 1,25(OH)2D3 is locally produced, highlighting the potential for autocrine-paracrine responses. 1,25(OH)2D3 through VDR, increased intracellular Ca2+ levels, motility and acrosin activity revealing an unexpected significance of this hormone in the acquisition of fertilizing ability. In sperm, 1,25(OH)2D3 through VDR, reduces triglycerides content concomitantly to the increase of lipase activity. Rapid responses stimulated by 1,25(OH)2D3 have been observed on Akt, MAPK and GSK3 implying that this secosteroid is involved in different sperm signalling pathways.ConclusionOur data extended the role of 1,25(OH)2D3 beyond its conventional physiological actions, paving the way for novel therapeutic opportunities in the treatment of the male reproduction disorders.


PLOS ONE | 2011

Opposite Effects of HIV-1 p17 Variants on PTEN Activation and Cell Growth in B Cells

Cinzia Giagulli; Stefania Marsico; Anna K. Magiera; Rosalinda Bruno; Francesca Caccuri; Ines Barone; Simona Fiorentini; Sebastiano Andò; Arnaldo Caruso

The HIV-1 matrix protein p17 is a structural protein that can act in the extracellular environment to deregulate several functions of immune cells, through the interaction of its NH2-terminal region with a cellular surface receptor (p17R). The intracellular events triggered by p17/p17R interaction have been not completely characterized yet. In this study we analyze the signal transduction pathways induced by p17/p17R interaction and show that in Raji cells, a human B cell line stably expressing p17R on its surface, p17 induces a transient activation of the transcriptional factor AP-1. Moreover, it was found to upregulate pERK1/2 and downregulate pAkt, which are the major intracellular signalling components involved in AP-1 activation. These effects are mediated by the COOH-terminal region of p17, which displays the capability of keeping PTEN, a phosphatase that regulates the PI3K/Akt pathway, in an active state through the serin/threonin (Ser/Thr) kinase ROCK. Indeed, the COOH-terminal truncated form of p17 (p17Δ36) induced activation of the PI3K/Akt pathway by maintaining PTEN in an inactive phosphorylated form. Interestingly, we show that among different p17s, a variant derived from a Ugandan HIV-1 strain, named S75X, triggers an activation of PI3K/Akt signalling pathway, and leads to an increased B cell proliferation and malignant transformation. In summary, this study shows the role of the COOH-terminal region in modulating the p17 signalling pathways so highlighting the complexity of p17 binding to and signalling through its receptor(s). Moreover, it provides the first evidence on the presence of a p17 natural variant mimicking the p17Δ36-induced signalling in B cells and displaying the capacity of promoting B cell growth and tumorigenesis.


Molecular and Cellular Biology | 2010

Akt2 Inhibition Enables the Forkhead Transcription Factor FoxO3a To Have a Repressive Role in Estrogen Receptor α Transcriptional Activity in Breast Cancer Cells

Catia Morelli; Marilena Lanzino; Cecilia Garofalo; Pamela Maris; Elvira Brunelli; Ivan Casaburi; Stefania Catalano; Rosalinda Bruno; Diego Sisci; Sebastiano Andò

ABSTRACT Estrogen receptor alpha (ER) and the insulin-like growth factor I receptor (IGF-IR) pathways are engaged in a functional cross talk in breast cancer, promoting tumor progression and increased resistance to anticancer treatments and radiotherapy. Here, we introduce new mechanisms through which proteins of the IGF-I/IGF-IR signaling pathway may regulate ER function in the absence of ligand. Our results indicate that in ER-positive breast cancer cells, Akt2 modulates ER transcriptional activity at multiple levels, including (i) the regulation of ER expression and its nuclear retention and (ii) the activation of one of its downstream targets, the Forkhead transcription factor FoxO3a. FoxO3a colocalizes and coprecipitates with ER in the nucleus, where it binds to Forkhead-responsive sequences on the ER target pS2/TFF-1 promoter; in addition, FoxO3a silencing leads to an increase of ER transcriptional activity, suggesting a repressive role of the Forkhead transcription factor in ER function. Moreover, 17β-estradiol upregulates FoxO3a levels, which could represent the basis for an ER-mediated homeostatic mechanism. These findings provide further evidence of the importance of mediators of the growth factor signaling in ER regulation, introducing the Akt2/FoxO3a axis as a pursuable target in therapy for ER-positive breast cancer.


Molecular and Cellular Biology | 2009

Akt2 inhibition enables the Forkhead transcription factor FoxO3a to a repressive role for ERα transcriptional activity in breast cancer cells

Catia Morelli; Marilena Lanzino; Cecilia Garofalo; Pamela Maris; Elvira Brunelli; Ivan Casaburi; Stefania Catalano; Rosalinda Bruno; Diego Sisci; Sebastiano Andò

ABSTRACT Estrogen receptor alpha (ER) and the insulin-like growth factor I receptor (IGF-IR) pathways are engaged in a functional cross talk in breast cancer, promoting tumor progression and increased resistance to anticancer treatments and radiotherapy. Here, we introduce new mechanisms through which proteins of the IGF-I/IGF-IR signaling pathway may regulate ER function in the absence of ligand. Our results indicate that in ER-positive breast cancer cells, Akt2 modulates ER transcriptional activity at multiple levels, including (i) the regulation of ER expression and its nuclear retention and (ii) the activation of one of its downstream targets, the Forkhead transcription factor FoxO3a. FoxO3a colocalizes and coprecipitates with ER in the nucleus, where it binds to Forkhead-responsive sequences on the ER target pS2/TFF-1 promoter; in addition, FoxO3a silencing leads to an increase of ER transcriptional activity, suggesting a repressive role of the Forkhead transcription factor in ER function. Moreover, 17β-estradiol upregulates FoxO3a levels, which could represent the basis for an ER-mediated homeostatic mechanism. These findings provide further evidence of the importance of mediators of the growth factor signaling in ER regulation, introducing the Akt2/FoxO3a axis as a pursuable target in therapy for ER-positive breast cancer.


Vaccine | 2008

Synthetic peptide AT20 coupled to KLH elicits antibodies against a conserved conformational epitope from a major functional area of the HIV-1 matrix protein p17

Simona Fiorentini; Stefania Marsico; Pablo D. Becker; Maria Luisa Iaria; Rosalinda Bruno; Carlos A. Guzmán; Arnaldo Caruso

The major challenge for the development of a highly effective peptide-based vaccine is represented by the diversity of HIV-1 strains among human population. HIV-1 matrix protein p17 is a candidate antigen for therapeutic vaccines against AIDS. Here we show that antibodies elicited in animals by immunizing them with a synthetic peptide representative of the p17 functional epitope (AT20) derived from HIV-1 BH10 (clade B), neutralize the biological activity of p17 derived from divergent strains displaying critical mutations within AT20, by recognizing a highly conserved conformational epitope. This finding shows that AT20, as an immunogenic molecule, elicits broadly neutralizing anti-p17 antibodies.


Histochemical Journal | 1999

Regulation of the p75 Neurotrophin Receptor in a Rat Myogenic Cell Line (L6)

Mario Rende; Emanuela Brizi; Guglielmo Sorci; Roberta Bianchi; Carlo Provenzano; Rosalinda Bruno; Rosario Donato

Neurotrophins are expressed in muscle cells both during development and postnatally. Furthermore, during development muscle cells express high levels of the common p75 neurotrophin receptor, which binds all neurotrophins. Only fragmentary and controversial data are available regarding the responsiveness of muscle cells to neurotrophins and the importance of low-affinity p75 receptor in muscle development. The present study investigates in vitro the immunocytochemical expression of p75 in a rat myogenic cell line (L6) at various time points and in response to different coating substrates as a first step in elucidating the regulation of p75 in muscle. We found that in L6 myoblasts, p75 is expressed only at very early stages of maturation and its levels of expression are regulated by the nature of the coating substrates. p75 expression decreases in cells growing on substrates more suitable for myoblast fusion into myotubes. Time course analysis indicates a reverse correlation between myoblast fusion into myotubes and the levels of p75 expression. Myotubes were always p75 negative. Substrates not suitable for the fusion process induced a prolonged presence of p75 in myoblasts with an increase of their apoptosis. We conclude that expression of p75, at least in this in vitro condition, is regulated by the stages of myoblast differentiation and the nature of the coating substrates. According to the observed time- and substrate-related evidences, future studies should investigate in vivo both the regulation of p75 in the myoblast fusion and the effects and the importance of neurotrophins binding during myoblast differentiation.


Ultrastructural Pathology | 2013

Human Sperm Anatomy: Different Expression and Localization of Phosphatidylinositol 3-Kinase in Normal and Varicocele Human Spermatozoa

Francesca De Amicis; Ida Perrotta; Marta Santoro; Carmela Guido; Catia Morelli; Maria Grazia Cesario; Rosalinda Bruno; Saveria Aquila

Abstract Recent reports support the possible role of PI3K in sperm capacitation and acrosome reaction, although studies regarding PI3K identity in human sperm, under certain disease states such as varicocele, are still lacking. The authors, therefore, examined the expression profile and ultrastructural localization of PI3K in human semen samples, comparing healthy donors and patients with varicocele. The results obtained performing western blotting assay showed decreased PI3K expression in varicocele with respect to the “healthy” sperm. Immunogold labeling revealed human sperm cellular compartments containing PI3K, evidencing it in the head at both the membrane and nucleus and the entire tail, from the middle to the end piece of normal sperm. In varicocele PI3K label was confined to the head, with a strong reduction of specific reaction in the neck, middle piece, and tail. In conclusion, the data suggest that PI3K may play a role in the maintenance of male factor infertility associated with varicocele, and it may be further exploited as an additional molecular marker for the diagnosis of male infertility disorders.


Animal Reproduction Science | 2012

Progesterone through progesterone receptors affects survival and metabolism of pig sperm.

F. De Amicis; Marta Santoro; Carmela Guido; Diego Sisci; Rosalinda Bruno; Amalia Carpino; Saveria Aquila

Progesterone receptors (PR) through interaction with the specific ligand progesterone (PRG), play a central coordinate role in different reproductive events. In this study conventional PR were identified in boar spermatozoa by Western blotting. Immunofluorescence techniques indicate that PR are located at sperm acrosomal region, suggesting a possible role in the oocyte fertilization events. Treatment with 17-hydroxyprogesterone (17-OHP) enhanced viability and induced cholesterol efflux, serine and tyrosine phosphorylation, p-Bcl2, p-Akt that are known hallmarks of capacitation in sperm. The analysis of the triglyceride contents, lipase and acyl-CoA dehydrogenase activities, as well as the G6PDH activity, was conducted so as to address whether there was an increase in energy expenditure via 17-OHP through the PR. Taken together these results, particularly the 17-OHP action on boar sperm lipid and glucose metabolism, give emphasis to the role of PR in sperm physiology within the oviductal environment. Moreover the present study highlights, the effect of PRG via PR on boar sperm survival, renewing the role of this hormone in male reproduction as candidate for boar fertility. Thus the present research contributes to further elucidating the role of progesterone on the physiological regulation of the most relevant spermatozoa functions for a successful fertilization.


Muscle & Nerve | 2001

Prosaposin is immunolocalized to muscle and prosaptides promote myoblast fusion and attenuate loss of muscle mass after nerve injury

Mario Rende; Emanuela Brizi; Rosario Donato; Carlo Provenzano; Rosalinda Bruno; Andrew P. Mizisin; Robert S. Garrett; Nigel A. Calcutt; W. Marie Campana; John S. O'Brien

Prosaposin is the precursor of the saposins and has both neurotrophic and myelinotrophic activity in vitro and in vivo. Using an antibody specific for the holoprotein, an immunocytochemical survey demonstrated intense staining of adult rat skeletal, cardiac, and smooth muscle cells. Prosaposin immunoreactivity in muscle appears dependent on innervation, as denervated adult rat skeletal muscles showed decreased immunostaining that returned to normal levels after reinnervation. TX14(A), a peptide derived from the neurotrophic sequence of prosaposin, attenuated the decline in muscle mass loss following nerve injury induced by a constricting ligature. In vitro, both L6 myoblasts and primary chick‐embryo myoblasts showed similar prosaposin immunopositivity, mainly in myotubes. TX14(A) induced a threefold increase in L6 myoblast fusion during early stages of differentiation without affecting cell proliferation. The fusion process was decreased in vitro in a dose‐dependent fashion by addition of a neutralizing anti‐prosaposin antibody. These data suggest that, in addition to neurotrophic and myelinotrophic activities, prosaposin has myotrophic properties.


Brain Research | 1999

Modulation of serotonin 5-HT3 receptor expression in injured adult rat spinal cord motoneurons

Mario Rende; Marisela Morales; Emanuela Brizi; Rosalinda Bruno; Floyd E. Bloom; Pietro Paolo Sanna

The effects of sciatic nerve lesions on the expression of serotonin 5-HT3 receptor (5-HT3R) alpha subunit in motoneurons of the spinal cord was investigated by semi-quantitative immunohistochemistry. Following sciatic nerve crush, a significant reduction in density of staining in motoneurons was observed in longitudinal sections of the ventral horn at 3 and 15 days on the lesioned side when compared to the contralateral side (p<0.01). At 30 days after crush, after completion of sciatic nerve regeneration and reinnervation of peripheral targets, intensity of staining had returned to normal. Conversely, after sciatic nerve cut, a lesion that does not allow for target reinnervation, highly significant reductions were observed at 3, 15, 30 and 45 days. These results suggest a role for functional contacts with muscular targets in the maintenance of 5-HT3R expression in spinal motoneurons.

Collaboration


Dive into the Rosalinda Bruno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ines Barone

University of Calabria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge