Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosamond L. Naylor is active.

Publication


Featured researches published by Rosamond L. Naylor.


Nature | 2002

Agricultural sustainability and intensive production practices

David Tilman; Kenneth G. Cassman; Pamela A. Matson; Rosamond L. Naylor; Stephen Polasky

A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global useable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.


Nature | 2000

Consequences of changing biodiversity

F. Stuart Chapin; Erika S. Zavaleta; Valerie T. Eviner; Rosamond L. Naylor; Peter M. Vitousek; Heather L. Reynolds; David U. Hooper; Sandra Lavorel; Osvaldo E. Sala; Sarah E. Hobbie; Michelle C. Mack; Sandra Díaz

Human alteration of the global environment has triggered the sixth major extinction event in the history of life and caused widespread changes in the global distribution of organisms. These changes in biodiversity alter ecosystem processes and change the resilience of ecosystems to environmental change. This has profound consequences for services that humans derive from ecosystems. The large ecological and societal consequences of changing biodiversity should be minimized to preserve options for future solutions to global environmental problems.


Nature | 2000

Effect of aquaculture on world fish supplies

Rosamond L. Naylor; Rebecca J. Goldburg; Jurgenne H. Primavera; Nils Kautsky; M. C. M. Beveridge; Jason Clay; Carl Folke; Jane Lubchenco; Harold A. Mooney; Max Troell

Global production of farmed fish and shellfish has more than doubled in the past 15 years. Many people believe that such growth relieves pressure on ocean fisheries, but the opposite is true for some types of aquaculture. Farming carnivorous species requires large inputs of wild fish for feed. Some aquaculture systems also reduce wild fish supplies through habitat modification, wild seedstock collection and other ecological impacts. On balance, global aquaculture production still adds to world fish supplies; however, if the growing aquaculture industry is to sustain its contribution to world fish supplies, it must reduce wild fish inputs in feed and adopt more ecologically sound management practices.


Science | 2008

Prioritizing climate change adaptation needs for food security in 2030

David B. Lobell; Marshall Burke; Claudia Tebaldi; Michael D. Mastrandrea; Walter P. Falcon; Rosamond L. Naylor

Investments aimed at improving agricultural adaptation to climate change inevitably favor some crops and regions over others. An analysis of climate risks for crops in 12 food-insecure regions was conducted to identify adaptation priorities, based on statistical crop models and climate projections for 2030 from 20 general circulation models. Results indicate South Asia and Southern Africa as two regions that, without sufficient adaptation measures, will likely suffer negative impacts on several crops that are important to large food-insecure human populations. We also find that uncertainties vary widely by crop, and therefore priorities will depend on the risk attitudes of investment institutions.


Science | 2009

Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat

David S. Battisti; Rosamond L. Naylor

Higher growing season temperatures can have dramatic impacts on agricultural productivity, farm incomes, and food security. We used observational data and output from 23 global climate models to show a high probability (>90%) that growing season temperatures in the tropics and subtropics by the end of the 21st century will exceed the most extreme seasonal temperatures recorded from 1900 to 2006. In temperate regions, the hottest seasons on record will represent the future norm in many locations. We used historical examples to illustrate the magnitude of damage to food systems caused by extreme seasonal heat and show that these short-run events could become long-term trends without sufficient investments in adaptation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Feeding aquaculture in an era of finite resources

Rosamond L. Naylor; Ronald W. Hardy; Dominique P. Bureau; Alice Chiu; Matthew Elliott; Anthony P. Farrell; Ian C. Forster; Delbert M. Gatlin; Rebecca J. Goldburg; Katheline Hua; Peter D. Nichols

Aquacultures pressure on forage fisheries remains hotly contested. This article reviews trends in fishmeal and fish oil use in industrial aquafeeds, showing reduced inclusion rates but greater total use associated with increased aquaculture production and demand for fish high in long-chain omega-3 oils. The ratio of wild fisheries inputs to farmed fish output has fallen to 0.63 for the aquaculture sector as a whole but remains as high as 5.0 for Atlantic salmon. Various plant- and animal-based alternatives are now used or available for industrial aquafeeds, depending on relative prices and consumer acceptance, and the outlook for single-cell organisms to replace fish oil is promising. With appropriate economic and regulatory incentives, the transition toward alternative feedstuffs could accelerate, paving the way for a consensus that aquaculture is aiding the ocean, not depleting it.


Science | 2009

Nutrient Imbalances in Agricultural Development

Peter M. Vitousek; Rosamond L. Naylor; Timothy E. Crews; Mark B. David; Laurie E. Drinkwater; Elisabeth A. Holland; Penny J Johnes; John Katzenberger; Luiz A. Martinelli; Pamela A. Matson; Generose Nziguheba; Dennis Ojima; Cheryl A. Palm; G. P. Robertson; Pedro A. Sanchez; Alan R. Townsend; Fusuo Zhang

Nutrient additions to intensive agricultural systems range from inadequate to excessive—and both extremes have substantial human and environmental costs. Nutrient cycles link agricultural systems to their societies and surroundings; inputs of nitrogen and phosphorus in particular are essential for high crop yields, but downstream and downwind losses of these same nutrients diminish environmental quality and human well-being. Agricultural nutrient balances differ substantially with economic development, from inputs that are inadequate to maintain soil fertility in parts of many developing countries, particularly those of sub-Saharan Africa, to excessive and environmentally damaging surpluses in many developed and rapidly growing economies. National and/or regional policies contribute to patterns of nutrient use and their environmental consequences in all of these situations (1). Solutions to the nutrient challenges that face global agriculture can be informed by analyses of trajectories of change within, as well as across, agricultural systems.


Trends in Ecology and Evolution | 2010

Ecosystem Stewardship: Sustainability Strategies for a Rapidly Changing Planet

F. Stuart Chapin; Stephen R. Carpenter; Gary P. Kofinas; Carl Folke; Nick Abel; William C. Clark; Per Olsson; D. Mark Stafford Smith; Brian Walker; Oran R. Young; Fikret Berkes; Reinette Biggs; J. Morgan Grove; Rosamond L. Naylor; Evelyn Pinkerton; Will Steffen; Frederick J. Swanson

Ecosystem stewardship is an action-oriented framework intended to foster the social-ecological sustainability of a rapidly changing planet. Recent developments identify three strategies that make optimal use of current understanding in an environment of inevitable uncertainty and abrupt change: reducing the magnitude of, and exposure and sensitivity to, known stresses; focusing on proactive policies that shape change; and avoiding or escaping unsustainable social-ecological traps. As we discuss here, all social-ecological systems are vulnerable to recent and projected changes but have sources of adaptive capacity and resilience that can sustain ecosystem services and human well-being through active ecosystem stewardship.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Illustrating the coupled human- environment system for vulnerability analysis: Three case studies

Barry Turner; Pamela A. Matson; James J. McCarthy; Robert W. Corell; Lindsey Christensen; Noelle Eckley; Grete K. Hovelsrud-Broda; Jeanne X. Kasperson; Roger E. Kasperson; Amy Luers; Marybeth L. Martello; Svein D. Mathiesen; Rosamond L. Naylor; Colin Polsky; Alexander Pulsipher; Andrew Schiller; Henrik Selin; Nicholas Tyler

The vulnerability framework of the Research and Assessment Systems for Sustainability Program explicitly recognizes the coupled human–environment system and accounts for interactions in the coupling affecting the systems responses to hazards and its vulnerability. This paper illustrates the usefulness of the vulnerability framework through three case studies: the tropical southern Yucatán, the arid Yaqui Valley of northwest Mexico, and the pan-Arctic. Together, these examples illustrate the role of external forces in reshaping the systems in question and their vulnerability to environmental hazards, as well as the different capacities of stakeholders, based on their access to social and biophysical capital, to respond to the changes and hazards. The framework proves useful in directing attention to the interacting parts of the coupled system and helps identify gaps in information and understanding relevant to reducing vulnerability in the systems as a whole.


Ecology and Society | 2013

Framing Sustainability in a Telecoupled World

Jianguo Liu; Vanessa Hull; Mateus Batistella; Ruth S. DeFries; Thomas Dietz; Feng Fu; Thomas W. Hertel; R. Cesar Izaurralde; Eric F. Lambin; Shuxin Li; Luiz A. Martinelli; William J. McConnell; Emilio F. Moran; Rosamond L. Naylor; Zhiyun Ouyang; Karen R. Polenske; Anette Reenberg; Gilberto de Miranda Rocha; Cynthia S. Simmons; Peter H. Verburg; Peter M. Vitousek; Fusuo Zhang; Chunquan Zhu

Interactions between distant places are increasingly widespread and influential, often leading to unexpected outcomes with profound implications for sustainability. Numerous sustainability studies have been conducted within a particular place with little attention to the impacts of distant interactions on sustainability in multiple places. Although distant forces have been studied, they are usually treated as exogenous variables and feedbacks have rarely been considered. To understand and integrate various distant interactions better, we propose an integrated framework based on telecoupling, an umbrella concept that refers to socioeconomic and environmental interactions over distances. The concept of telecoupling is a logical extension of research on coupled human and natural systems, in which interactions occur within particular geographic locations. The telecoupling framework contains five major interrelated components, i.e., coupled human and natural systems, flows, agents, causes, and effects. We illustrate the framework using two examples of distant interactions associated with trade of agricultural commodities and invasive species, highlight the implications of the framework, and discuss research needs and approaches to move research on telecouplings forward. The framework can help to analyze system components and their interrelationships, identify research gaps, detect hidden costs and untapped benefits, provide a useful means to incorporate feedbacks as well as trade-offs and synergies across multiple systems (sending, receiving, and spillover systems), and improve the understanding of distant interactions and the effectiveness of policies for socioeconomic and environmental sustainability from local to global levels.

Collaboration


Dive into the Rosamond L. Naylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Stuart Chapin

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl Folke

Royal Swedish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge