Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosane G. Collevatti is active.

Publication


Featured researches published by Rosane G. Collevatti.


Science | 2013

Functional Extinction of Birds Drives Rapid Evolutionary Changes in Seed Size

Mauro Galetti; Roger Guevara; Marina Corrêa Côrtes; Rodrigo F. Fadini; Sandro Von Matter; Abraão de Barros Leite; Fábio M. Labecca; Thiago Ribeiro; Carolina da Silva Carvalho; Rosane G. Collevatti; Mathias M. Pires; Paulo R. Guimarães; Pedro H. Brancalion; Milton Cezar Ribeiro; Pedro Jordano

The Birds and the Seeds When species are lost from ecosystems through local extinction, the pattern of ecological interactions changes. Galetti et al. (p. 1086) show how the loss of large fruit-eating birds from tropical forest fragments in Brazil affects the reduction of seed size in a palm species. A data set was compiled that consisted of >9000 seeds measured in 22 populations over a large area of Atlantic rainforest, including seven areas where large-seed dispersers (toucans, cracids, and large cotingas) were extinct and 15 areas where they are still common. Local extinction of large fruit-eating birds selects for reduction of seed size in a tropical forest palm. Local extinctions have cascading effects on ecosystem functions, yet little is known about the potential for the rapid evolutionary change of species in human-modified scenarios. We show that the functional extinction of large-gape seed dispersers in the Brazilian Atlantic forest is associated with the consistent reduction of the seed size of a keystone palm species. Among 22 palm populations, areas deprived of large avian frugivores for several decades present smaller seeds than nondefaunated forests, with negative consequences for palm regeneration. Coalescence and phenotypic selection models indicate that seed size reduction most likely occurred within the past 100 years, associated with human-driven fragmentation. The fast-paced defaunation of large vertebrates is most likely causing unprecedented changes in the evolutionary trajectories and community composition of tropical forests.


Journal of Bacteriology | 2005

Swine and Poultry Pathogens: the Complete Genome Sequences of Two Strains of Mycoplasma hyopneumoniae and a Strain of Mycoplasma synoviae

Ana Tereza R. Vasconcelos; Henrique Bunselmeyer Ferreira; Cristiano Valim Bizarro; Sandro L. Bonatto; Marcos Oliveira de Carvalho; Paulo Marcos Pinto; Darcy F. de Almeida; Luiz G. P. Almeida; Rosana Almeida; Leonardo Alves-Filho; E. Assunção; Vasco Azevedo; Maurício Reis Bogo; Marcelo M. Brigido; Marcelo Brocchi; Helio A. Burity; Anamaria A. Camargo; Sandro da Silva Camargo; Marta Sofia Peixe Carepo; Dirce M. Carraro; Júlio C. de Mattos Cascardo; Luiza Amaral de Castro; Gisele Cavalcanti; Gustavo Chemale; Rosane G. Collevatti; Cristina W. Cunha; Bruno Dallagiovanna; Bibiana Paula Dambrós; Odir A. Dellagostin; Clarissa Falcão

This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae.


Molecular Ecology | 2012

A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species

Rosane G. Collevatti; Levi Carina Terribile; Matheus S. Lima-Ribeiro; João Carlos Nabout; Guilherme de Oliveira; Thiago F. Rangel; Suelen Gonçalves Rabelo; José Alexandre Felizola Diniz-Filho

We investigated here the demographical history of Tabebuia impetiginosa (Bignoniaceae) to understand the dynamics of the disjunct geographical distribution of South American seasonally dry forests (SDFs), based on coupling an ensemble approach encompassing hindcasting species distribution modelling and statistical phylogeographical analysis. We sampled 17 populations (280 individuals) in central Brazil and analysed the polymorphisms at chloroplast (trnS‐trnG, psbA‐trnH, and ycf6‐trnC intergenic spacers) and nuclear (ITS nrDNA) genomes. Phylogenetic analyses based on median‐joining network showed no haplotype sharing among population but strong evidence of incomplete lineage sorting. Coalescent analyses showed historical constant populations size, negligible gene flow among populations, and an ancient time to most recent common ancestor dated from ~4.7 ± 1.1 Myr BP. Most divergences dated from the Lower Pleistocene, and no signal of important population size reduction was found in coalescent tree and tests of demographical expansion. Demographical scenarios were built based on past geographical range dynamic models, using two a priori biogeographical hypotheses (‘Pleistocene Arc’ and ‘Amazonian SDF expansion’) and on two additional hypotheses suggested by the palaeodistribution modelling built with several algorithms for distribution modelling and palaeoclimatic data. The simulation of these demographical scenarios showed that the pattern of diversity found so far for T. impetiginosa is in consonance with a palaeodistribution expansion during the last glacial maximum (LGM, 21 kyr BP), strongly suggesting that the current disjunct distribution of T. impetiginosa in SDFs may represent a climatic relict of a once more wide distribution.


Annals of Botany | 2009

Phylogeography and disjunct distribution in Lychnophora ericoides (Asteraceae), an endangered cerrado shrub species

Rosane G. Collevatti; Suelen Gonçalves Rabelo; Roberto F. Vieira

BACKGROUND AND AIMS Lychnophora ericoides (Asteraceae) presents disjunct geographical distribution in cerrado rupestre in the south-east and central Brazil. The phylogeography of the species was investigated to understand the origin of the disjunct geographical distribution. METHODS Populations in the south and centre of Serra do Espinhaço, south-east Brazil and on ten other localities in Federal District and Goiás in central Brazil were sampled. Analyses were based on the polymorphisms at chloroplast (trnL intron and psbA-trnH intergenic spacer) and nuclear (ITS nrDNA) genomes. From 12 populations, 192 individuals were sequenced. Network analysis, AMOVA and the Mantel test were performed to understand the relationships among haplotypes and population genetic structure. To understand better the origin of disjunct distribution, demographic parameters and time to most recent common ancestor (T(MRCA)) were estimated using coalescent analyses. KEY RESULTS A remarkable differentiation between populations from the south-east and central Brazil was found and no haplotype was shared between these two regions. No significant effect of isolation by distance was detected. Coalescent analyses showed that some populations are shrinking and others are expanding and that gene flow between populations from the south-east and central Brazil was probably negligible. CONCLUSIONS The results strongly support that the disjunct distribution of L. ericoides may represent a climatic relict and that long-distance gene flow is unlikely. With an estimated time to most recent common ancestor (T(MRCA)) dated from approx. 790,655 +/- 36,551 years bp (chloroplast) and approx. 623,555 +/- 55,769 years bp (ITS), it was hypothesized that the disjunct distribution may be a consequence of an expansion of the geographical distribution favoured by the drier and colder conditions that prevailed in much of Brazil during the Kansan glaciation, followed by the retraction of the distribution due to the extinction of populations in some areas as climate became warmer and moister.


Molecular Phylogenetics and Evolution | 2010

Late Miocene diversification and phylogenetic relationships of the huge toads in the Rhinella marina (Linnaeus, 1758) species group (Anura: Bufonidae).

Natan Medeiros Maciel; Rosane G. Collevatti; Guarino R. Colli; Elisabeth F. Schwartz

We investigated the phylogeny and biogeography of the Rhinella marina group, using molecular, morphological, and skin-secretion data, contributing to an understanding of Neotropical faunal diversification. The maximum-parsimony and Bayesian analyzes of the combined data recovered a monophyletic R. marina group. Molecular dating based on Bayesian inferences and fossil calibration placed the earliest phylogenetic split within the R. marina group at ∼ 10.47 MYA, in the late Miocene. Two rapid major diversifications occurred from Central Brazil, first northward (∼ 8.08 MYA) in late Miocene and later southward (∼ 5.17 MYA) in early Pliocene. These results suggest that barriers and dispersal routes created by the uplift of Brazilian Central Shield and climatic changes explain the diversification and current species distributions of the R. marina group. Dispersal-vicariance analyzes (DIVA) indicated that the two major diversifications of the R. marina group were due to vicariance, although eleven dispersals subsequently occurred.


Heredity | 2013

Demographic history and the low genetic diversity in Dipteryx alata (Fabaceae) from Brazilian Neotropical savannas

Rosane G. Collevatti; M P C Telles; J C Nabout; L J Chaves; T N Soares

Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species’ distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species’ paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence.


Conservation Genetics | 2012

Planning for optimal conservation of geographical genetic variability within species

José Alexandre Felizola Diniz-Filho; Dayane Borges Melo; Guilherme de Oliveira; Rosane G. Collevatti; Thannya Nascimento Soares; João Carlos Nabout; Jacqueline de Souza Lima; Ricardo Dobrovolski; Lázaro José Chaves; Ronaldo Veloso Naves; Rafael Loyola; Mariana Pires de Campos Telles

Systematic Conservation Planning (SCP) involves a series of steps that should be accomplished to determine the most cost-effective way to invest in conservation action. Although SCP has been usually applied at the species level (or hierarchically higher), it is possible to use alleles from molecular analyses at the population level as basic units for analyses. Here we demonstrate how SCP procedures can be used to establish optimum strategies for in situ and ex situ conservation of a single species, using Dipteryx alata (a Fabaceae tree species widely distributed and endemics to Brazilian Cerrado) as a case study. Data for the analyses consisted in 52 alleles from eight microsatellite loci coded for a total of 644 individual trees sampled in 25 local populations throughout species’ geographic range. We found optimal solutions in which seven local populations are the smallest set of local populations of D. alata that should be conserved to represent the known genetic diversity. Combining these several solutions allowed estimating the relative importance of the local populations for conserving all known alleles, taking into account the current land-use patterns in the region. A germplasm collection for this species already exists, so we also used SCP approach to identify the smallest number of populations that should be further collected in the field to complement the existing collection, showing that only four local populations should be sampled for optimizing the species ex situ representation. The initial application of the SCP methods to genetic data showed here can be a useful starting point for methodological and conceptual improvements and may be a first important step towards a comprehensive and balanced quantitative definition of conservation goals, shedding light to new possibilities for in situ and ex situ designs within species.


Tree Genetics & Genomes | 2009

Niche modelling and landscape genetics of Caryocar brasiliense ("Pequi" tree: Caryocaraceae) in Brazilian Cerrado: an integrative approach for evaluating central-peripheral population patterns.

José Alexandre Felizola Diniz-Filho; João Carlos Nabout; Luis Mauricio Bini; Thannya Nascimento Soares; Mariana Pires de Campos Telles; Paulo De Marco; Rosane G. Collevatti

Complex and integrative approaches may be necessary to understand the abundant-centre model and the patterns in genetic diversity that may be explained by this model. Here we developed an integrated framework to study spatial patterns in genetic diversity within local populations, coupling genetic data, niche modelling and landscape genetics, and applied this framework to evaluate population structure of Caryocar brasiliense, an endemic tree from the Brazilian Cerrado. We showed different geographical patterns for genetic diversity, allelic richness and inbreeding levels, estimated using microsatellite data for ten local populations. Ecological suitability was estimating by combining five niche modelling techniques. Genetic diversity tend to follow a central-periphery model and is associated with ecological variables. On the other hand, inbreeding levels may be alternatively explained by isolation processes and habitat fragmentation more related to intense recent human occupation in the southern border of the biome, or by deeper historical patterns in the origin of the populations. Although still suffering from some of the problems of central-periphery analysis (small number of local populations), our analyses show how these patterns can be better investigated and offering a better understanding of the processes structuring genetic diversity within species’ geographic ranges.


Molecular Ecology | 2009

Phylogeny, biogeography and evolution of clutch size in South American lizards of the genus Kentropyx (Squamata: Teiidae)

Fernanda P. Werneck; Lilian G. Giugliano; Rosane G. Collevatti; Guarino R. Colli

The lizard genus Kentropyx (Squamata: Teiidae) comprises nine species, which have been placed in three species groups (calcarata group, associated to forests ecosystems; paulensis and striata groups, associated to open ecosystems). We reconstructed phylogenetic relationships of Kentropyx based on morphology (pholidosis and coloration) and mitochondrial DNA data (12S and 16S), using maximum parsimony and Bayesian methods, and evaluated biogeographic scenarios based on ancestral areas analyses and molecular dating by Bayesian methods. Additionally, we tested the life‐history hypothesis that species of Kentropyx inhabiting open ecosystems (under seasonal environments) produce larger clutches with smaller eggs and that species inhabiting forest ecosystems (under aseasonal conditions) produce clutches with fewer and larger eggs, using Stearns’ phylogenetic‐subtraction method and canonical phylogenetic ordination to take in to account the effects of phylogeny. Our results showed that Kentropyx comprises three monophyletic groups, with K. striata occupying a basal position in opposition to previous suggestions of relationships. Additionally, Bayesian analysis of divergence time showed that Kentropyx may have originated at the Tertiary (Eocene/Oligocene) and the ‘Pleistocene Refuge Hypothesis’ may not explain the species diversification. Based on ancestral reconstruction and molecular dating, we argued that a savanna ancestor is more likely and that historical events during the Tertiary of South America promoted the differentiation of the genus, coupled with recent Quaternary events that were important as dispersion routes and for the diversification at populational levels. Clutch size and egg volume were not significantly different between major clades and ecosystems of occurrence, even accounting for the phylogenetic effects. Finally, we argue that phylogenetic constraints and phylogenetic inertia might be playing essential roles in life history evolution of Kentropyx.


Genetics and Molecular Biology | 2007

Evidence of high inbreeding in a population of the endangered giant anteater, Myrmecophaga tridactyla (Myrmecophagidae), from Emas National Park, Brazil

Rosane G. Collevatti; Kelly C.E. Leite; Guilherme H.B. de Miranda; Flavio H.G. Rodrigues

We report the genetic structure, relatedness and mating structure of a population of the endangered giant anteater Myrmecophaga tridactyla Linnaeus, 1758 in the Emas National Park, Brazil, based on variability at five microsatellite loci. Additionally, we addressed the hypothesis that the M. tridactyla population studied has low levels of polymorphism and high levels of inbreeding and relatedness and that animals with overlapping home range are highly related. All five microsatellite loci displayed low levels of polymorphism and of expected and observed heterozygosity. The low level of polymorphism and high inbreeding showed by the population studied may be the outcome of high mortality and reduction in population size due to recurrent fire events in the Emas National Park, as reported in 1994. The reduction in population size may have led to a higher frequency of mating between closely related animals, augmented by the isolation of the population in the park because of the expansion of agricultural land and fragmentation of the Cerrado environment. The natural history of M. tridactyla and the phylopatric (sex-biased dispersal) behavior of females should increase the effects of isolation and bottlenecking, decreasing gene flow and increasing inbreeding. However, the low levels of polymorphism found in this population may simply be due to the natural history and evolution of M. tridactyla as reported for other species. The genetic structure and dynamics of this population needs to be investigated more profoundly in order to provide sound data for the design of conservation strategies for M. tridactyla in the Emas National Park.

Collaboration


Dive into the Rosane G. Collevatti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matheus S. Lima-Ribeiro

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar

Lázaro José Chaves

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar

Levi Carina Terribile

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

João Carlos Nabout

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guilherme de Oliveira

Universidade Federal de Goiás

View shared research outputs
Researchain Logo
Decentralizing Knowledge