Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosanna Cardani is active.

Publication


Featured researches published by Rosanna Cardani.


The FASEB Journal | 2009

Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia

Simona Greco; Marco De Simone; Claudia Colussi; Germana Zaccagnini; Pasquale Fasanaro; Mario Pescatori; Rosanna Cardani; Riccardo Perbellini; Eleonora Isaia; Patrizio P. Sale; Giovanni Meola; Maurizio C. Capogrossi; Carlo Gaetano; Fabio Martelli

The aim of this work was to identify micro‐RNAs (miRNAs) involved in the pathological pathways activated in skeletal muscle damage and regeneration by both dystrophin absence and acute ischemia. Eleven miRNAs were deregulated both in MDX mice and in Duchenne muscular dystrophy patients (DMD signature). Therapeutic interventions ameliorating the mdx‐phenotype rescued DMD‐signature alterations. The significance of DMD‐signature changes was characterized using a damage/regeneration mouse model of hind‐limb ischemia and newborn mice. According to their expression, DMD‐signature miRNAs were divided into 3 classes. 1) Regeneration miRNAs, miR‐31, miR‐34c, miR‐206, miR‐335, miR‐449, and miR‐494, which were induced in MDX mice and in DMD patients, but also in newborn mice and in newly formed myofibers during postischemic regeneration. Notably, miR‐206, miR‐34c, and miR‐335 were up‐regulated following myoblast differentiation in vitro. 2) Degenerative‐miRNAs, miR‐1, miR‐29c, and miR‐135a, that were down‐modulated in MDX mice, in DMD patients, in the degenerative phase of the ischemia response, and in newborn mice. Their down‐modulation was linked to myofiber loss and fibrosis. 3) Inflammatory miRNAs, miR‐222 and miR‐223, which were expressed in damaged muscle areas, and their expression correlated with the presence of infiltrating inflammatory cells. These findings show an important role of miRNAs in physiopathological pathways regulating muscle response to damage and regeneration.—Greco, S., De Simone, M., Colussi, C., Zaccagnini, G., Fasanaro, P., Pescatori, M., Cardani, R., Perbellini, R., Isaia, E., Sale, P., Meola, G., Capogrossi, M. C., Gaetano, C., Martelli, F. Common micro‐RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB J. 23, 3335–3346 (2009). www.fasebj.org


Biochimica et Biophysica Acta | 2015

Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms

Giovanni Meola; Rosanna Cardani

Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinerts disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in ZNF9/CNBP. When transcribed into CUG/CCUG-containing RNA, mutant transcripts aggregate as nuclear foci that sequester RNA-binding proteins, resulting in spliceopathy of downstream effector genes. However, it is now clear that additional pathogenic mechanism like changes in gene expression, protein translation and micro-RNA metabolism may also contribute to disease pathology. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders requiring different diagnostic and management strategies. This review is an update on the recent advances in the understanding of the molecular mechanisms behind myotonic dystrophies. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.


Neuromuscular Disorders | 2011

Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1.

Riccardo Perbellini; Simona Greco; Gianluca Sarra-Ferraris; Rosanna Cardani; Maurizio C. Capogrossi; Giovanni Meola; Fabio Martelli

Myotonic Dystrophy Type-1 (DM1) is caused by the expansion of a CTG repeat with a peculiar pattern of multisystemic involvement affecting skeletal muscles, the heart, the eye, the central nervous system and the endocrine system. Since microRNA expression is disrupted in several myopathies, the expression of 24 candidate microRNAs was analyzed in skeletal muscle biopsies of 15 DM1 patients. Controls were constituted by biopsies without overt pathological features derived from 14 subjects with suspected neuromuscular disorder of undetermined nature. We found that miR-1 and miR-335 were up-regulated, whereas miR-29b and c, and miR-33 were down-regulated in DM1 biopsies compared to controls. We also found that the cellular distribution of muscle specific miR-1, miR-133b and miR-206 was severely altered in DM1 skeletal muscles. MicroRNA dysregulation was likely functionally relevant, since it impacted on the expression of the predicted miR-1, and miR-29 targets. The observed miRNA dysregulations and myslocalizations may contribute to DM1 pathogenetic mechanisms.


PLOS ONE | 2012

Deregulated microRNAs in myotonic dystrophy type 2

Simona Greco; Alessandra Perfetti; Pasquale Fasanaro; Rosanna Cardani; Maurizio C. Capogrossi; Giovanni Meola; Fabio Martelli

Myotonic Dystrophy Type-2 (DM2) is an autosomal dominant disease caused by the expansion of a CCTG tetraplet repeat. It is a multisystemic disorder, affecting skeletal muscles, the heart, the eye, the central nervous system and the endocrine system. Since microRNA (miRNA) expression is disrupted in Myotonic Dystrophy Type-1 and many other myopathies, miRNAs deregulation was studied in skeletal muscle biopsies of 13 DM2 patients and 13 controls. Eleven miRNAs were deregulated: 9 displayed higher levels compared to controls (miR-34a-5p, miR-34b-3p, miR-34c-5p, miR-146b-5p, miR-208a, miR-221-3p and miR-381), while 4 were decreased (miR-125b-5p, miR-193a-3p, miR-193b-3p and miR-378a-3p). To explore the relevance of DM2 miRNA deregulation, the predicted interactions between miRNA and mRNA were investigated. Global gene expression was analyzed in DM2 and controls and bioinformatic analysis identified more than 1,000 miRNA/mRNA interactions. Pathway and function analysis highlighted the involvement of the miRNA-deregulated mRNAs in multiple aspects of DM2 pathophysiology. In conclusion, the observed miRNA dysregulations may contribute to DM2 pathogenetic mechanisms.


European Journal of Histochemistry | 2006

Muscleblind-like protein 1 nuclear sequestration is a molecular pathology marker of DM1 and DM2

Rosanna Cardani; Enzo Mancinelli; Giuseppe Rotondo; Valeria Sansone; Giovanni Meola

Myotonic dystrophies (DM) are repeat expansion diseases in which expanded CTG (DM1) and CCTG (DM2) repeats cause the disease. Mutant transcripts containing CUG/CCUG repeats are retained in muscle nuclei producing ribonuclear inclusions, which can bind specific RNA-binding proteins, leading to a reduction in their activity. The sequestration of muscleblind-like proteins (MBNLs), a family of alternative splicing factors, appears to be involved in splicing defects characteristic of DM pathologies. To determine whether MBNL1 nuclear sequestration is a feature of DM pathologies, we have examined the in vivo distribution of MBNL1 in muscle sections from genetically confirmed DM1 (n=7) and DM2 (n=9) patients, patients with other myotonic disorders (n=11) and from patients with disorders caused by repeat expansions, but not DM1/DM2 (n=3). The results of our immunofluorescence study indicate that, among patients examined, MBNL1 nuclear sequestration in protein foci is a molecular pathology marker of DM1 and DM2 patients where ribonuclear inclusions of transcripts with expanded CUG/CCUG repeats are also present. These findings indicate that MBNLs might be important targets for therapeutic interventions to correct some of the specific features of DM pathology.


European Journal of Histochemistry | 2009

Biomolecular identification of (CCTG)n mutation in myotonic dystrophy type 2 (DM2) by FISH on muscle biopsy

Rosanna Cardani; Enzo Mancinelli; Valeria Sansone; Giuseppe Rotondo; Giovanni Meola

Myotonic dystrophy type 2 (DM2) is a dominantly inherited disorder with multisystemic clinical features, caused by a CCTG repeat expansion in intron 1 of the zinc finger protein 9 (ZNF9) gene. The mutant transcripts are retained in the nucleus forming multiple discrete foci also called ribonuclear inclusions. The size and the somatic instability of DM2 expansion complicate the molecular diagnosis of DM2. In our study fluorescence-labeled CAGG-repeat oligonucleotides were hybridized to muscle biopsies to investigate if fluorescence in situ hybridization (FISH), a relatively quick and simple procedure, could be used as a method to diagnose DM2. When FISH was performed with (CAGG)5 probe, nuclear foci of mutant RNA were present in all genetically confirmed DM2 patients (n=17) and absent in all patients with myotonic dystrophy type 1 (DM1; n=5) or with other muscular disease (n=17) used as controls. In contrast, foci were observed both in DM1 and DM2 myonuclei when muscle tissue were hybridized with (CAG)6CA probe indicating that this probe is not specific for DM2 identification. The consistent detection of ribonuclear inclusions in DM2 muscles and their absence in DM1, in agreement with the clinical diagnosis and with leukocyte (CCTG)n expansion, suggests that fluorescence in situ hybridization using (CAGG)5 probes, may be a specific method to distinguish between DM1 and DM2. Moreover, the procedure is simple, and readily applicable in any pathology laboratory.


Acta Neuropathologica | 2010

Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2

Anna Vihola; Linda L. Bachinski; Mario Sirito; Shodimu-Emmanuel Olufemi; Shohrae Hajibashi; Keith A. Baggerly; Olayinka Raheem; Hannu Haapasalo; Tiina Suominen; Jeanette Holmlund-Hampf; Anders Paetau; Rosanna Cardani; Giovanni Meola; Hannu Kalimo; Lars Edström; Ralf Krahe; Bjarne Udd

Aberrant transcription and mRNA processing of multiple genes due to RNA-mediated toxic gain-of-function has been suggested to cause the complex phenotype in myotonic dystrophies type 1 and 2 (DM1 and DM2). However, the molecular basis of muscle weakness and wasting and the different pattern of muscle involvement in DM1 and DM2 are not well understood. We have analyzed the mRNA expression of genes encoding muscle-specific proteins and transcription factors by microarray profiling and studied selected genes for abnormal splicing. A subset of the abnormally regulated genes was further analyzed at the protein level. TNNT3 and LDB3 showed abnormal splicing with significant differences in proportions between DM2 and DM1. The differential abnormal splicing patterns for TNNT3 and LDB3 appeared more pronounced in DM2 relative to DM1 and are among the first molecular differences reported between the two diseases. In addition to these specific differences, the majority of the analyzed genes showed an overall increased expression at the mRNA level. In particular, there was a more global abnormality of all different myosin isoforms in both DM1 and DM2 with increased transcript levels and a differential pattern of protein expression. Atrophic fibers in DM2 patients expressed only the fast myosin isoform, while in DM1 patients they co-expressed fast and slow isoforms. However, there was no increase of total myosin protein levels, suggesting that aberrant protein translation and/or turnover may also be involved.


European Journal of Histochemistry | 2009

RNA/MBNL1-containing foci in myoblast nuclei from patients affected by myotonic dystrophy type 2: an immunocytochemical study.

F. Perdoni; Manuela Malatesta; Rosanna Cardani; M. Giagnacovo; Enzo Mancinelli; Giovanni Meola; C. Pellicciari

Myotonic dystrophy type 2 (DM2) is a dominantly inherited autosomal disease with multi-systemic clinical features and it is caused by expansion of a CCTG tetranucleotide repeat in the first intron of the zinc finger protein 9 (ZNF9) gene in 3q21.The expanded-CCUG-containing transcripts are retained in the cell nucleus and accumulate in the form of focal aggregates which specifically sequester the muscleblind-like 1 (MBNL1) protein, a RNA binding factor involved in the regulation of alternative splicing. The structural organization and composition of the foci are still incompletely known. In this study, the nuclear foci occurring in cultured myoblasts from DM2 patients were characterised at fluorescence and transmission electron microscopy by using a panel of antibodies recognizing transcription and processing factors of pre-mRNAs. MBNL1 proved to co-locate in the nuclear foci with snRNPs and hnRNPs, whereas no co-location was observed with RNA polymerase II, the non-RNP splicing factor SC35, the cleavage factor CStF and the PML protein. At electron microscopy the MBNL1-containing nuclear foci appeared as roundish domains showing a rather homogeneous structure and proved to contain snRNPs and hnRNPs. The sequestration of splicing factors involved in early phases of pre-mRNA processing supports the hypothesis of a general alteration in the maturation of several mRNAs, which could lead to the multiple pathological dysfunctions observed in dystrophic patients.


Journal of Neurology | 2012

Co-segregation of DM2 with a recessive CLCN1 mutation in juvenile onset of myotonic dystrophy type 2

Rosanna Cardani; Marzia Giagnacovo; Annalisa Botta; Fabrizio Rinaldi; Alessandra Morgante; Bjarne Udd; Olayinka Raheem; Sini Penttilä; Tiina Suominen; Laura Valentina Renna; Valeria Sansone; Enrico Bugiardini; Giuseppe Novelli; Giovanni Meola

Myotonic dystrophy type 2 (DM2) is a common adult onset muscular dystrophy caused by a dominantly transmitted (CCTG)n expansion in intron 1 of the CNBP gene. In DM2 there is no obvious evidence for an intergenerational increase of expansion size, and no congenital cases have been confirmed. We describe the clinical and histopathological features, and provide the genetic and molecular explanation for juvenile onset of myotonia in a 14-year-old female with DM2 and her affected mother presenting with a more severe phenotype despite a later onset of symptoms. Histological and immunohistochemical findings correlated with disease severity or age at onset in both patients. Southern blot on both muscle and blood samples revealed only a small increase in the CCTG repeat number through maternal transmission. Fluorescence in situ hybridization, in combination with MBNL1 immunofluorescence on muscle sections, showed the presence of mutant mRNA and MBNL1 in nuclear foci; the fluorescence intensity and its area appeared to be similar in the two patients. Splicing analysis of the INSR, CLCN1 and MBNL1 genes in muscle tissue demonstrates that the level of aberrant splicing isoforms was lower in the daughter than in the mother. However, in the CLCN1 gene, a heterozygous mutation c.501C>G p.F167L was present in the daughter’s DNA and found to be maternally inherited. Biomolecular findings did not explain the unusual young onset in the daughter. The co-segregation of DM2 with a recessive CLCN1 mutation provided the explanation for the unusual clinical findings.


Neuromuscular Disorders | 2009

Ribonuclear inclusions and MBNL1 nuclear sequestration do not affect myoblast differentiation but alter gene splicing in myotonic dystrophy type 2

Rosanna Cardani; Simona Baldassa; Annalisa Botta; Fabrizio Rinaldi; Giuseppe Novelli; Enzo Mancinelli; Giovanni Meola

Myotonic dystrophy type 2 (DM2) is an autosomal dominant multisystemic disorder caused by a CCTG expansion in intron 1 of the zinc finger protein 9 gene on chromosome 3. Mutant transcripts are retained in muscle nuclei producing ribonuclear inclusions, which can bind specific RNA-binding proteins leading to a reduction in their activity. The nuclear sequestration of muscleblind-like proteins appears to be involved in splicing defects of genes directly related to the myotonic dystrophy phenotypes. Experimental evidence suggests that ribonuclear inclusions and muscleblind-like protein 1 (MBNL1) sequestration are strongly involved in DM2 pathogenesis. By using fluorescence in situ hybridization in combination with MBNL1-immunofluorescence, we have observed the presence of ribonuclear inclusions and MBNL1 nuclear sequestration at different time points of in vitro myoblast differentiation in each DM2 patient examined. Immunofluorescence and Western blot analysis of several markers of skeletal muscle differentiation reveal that the degree of differentiation of DM2 myoblasts is comparable to that observed in controls. Nevertheless the splicing pattern of the insulin receptor and MBNL1 transcripts, directly related to the DM2 phenotype, appears to be altered in in vitro differentiated DM2 myotubes. Our data seem indicate that the presence of ribonuclear inclusions and MBNL1 nuclear foci are involved in alteration of alternative splicing but do not impair DM2 myogenic differentiation.

Collaboration


Dive into the Rosanna Cardani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annalisa Botta

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rea Valaperta

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge