Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rose Amal is active.

Publication


Featured researches published by Rose Amal.


Journal of the American Chemical Society | 2011

Reduced Graphene Oxide as a Solid-state Electron Mediator in Z-scheme Photocatalytic Water Splitting under Visible Light

Akihide Iwase; Yun Hau Ng; Yoshimi Ishiguro; Akihiko Kudo; Rose Amal

The effectiveness of reduced graphene oxide as a solid electron mediator for water splitting in the Z-scheme photocatalysis system is demonstrated. We show that a tailor-made, photoreduced graphene oxide can shuttle photogenerated electrons from an O(2)-evolving photocatalyst (BiVO(4)) to a H(2)-evolving photocatalyst (Ru/SrTiO(3):Rh), tripling the consumption of electron-hole pairs in the water splitting reaction under visible-light irradiation.


Journal of Nanoparticle Research | 1999

Role of Nanoparticles in Photocatalysis

Donia Beydoun; Rose Amal; Gary Low; Stephen R. McEvoy

The aim of this review paper is to give an overview of the development and implications of nanotechnology in photocatalysis. The topics covered include a detailed look at the unique properties of nanoparticles and their relation to photocatalytic properties. Current applications of and research into the use of nanoparticles as photocatalysts has also been reviewed. Also covered is the utilization of nanoparticles in doped, coupled, capped, sensitized and organic–inorganic nanocomposite semiconductor systems, with an effort to enhance photocatalytic and/or optical properties of commonly used semiconductor materials. The use of nanocrystalline thin films in electrochemically assisted photocatalytic processes has been included. Finally, the use of nanoparticles has made a significant contribution in providing definitive mechanistic information regarding the photocatalytic process.


Journal of the American Chemical Society | 2012

Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response

Aijun Du; Stefano Sanvito; Zhen Li; Da-Wei Wang; Yan Jiao; Ting Liao; Qiao Sun; Yun Hau Ng; Zhonghua Zhu; Rose Amal; Sean C. Smith

Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long-range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C(3)N(4)) and electronically active graphene. We find an inhomogeneous planar substrate (g-C(3)N(4)) promotes electron-rich and hole-rich regions, i.e., forming a well-defined electron-hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C(3)N(4) substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C(3)N(4) interface opens a 70 meV gap in g-C(3)N(4)-supported graphene, a feature that can potentially allow overcoming the graphenes band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C(3)N(4) is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C(3)N(4) monolayer, the hybrid graphene/g-C(3)N(4) complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.


Advances in Colloid and Interface Science | 2002

On techniques for the measurement of the mass fractal dimension of aggregates.

Graeme Bushell; Y D Yan; D Woodfield; Judy A Raper; Rose Amal

A review is presented of a number of techniques available for the characterisation of the structure of aggregates formed from suspensions of sub-micron particles. Amongst the experimental techniques that have been commonly used are scattering (light, X-ray or neutron), settling and imaging and these are the focus of this work. The theoretical basis for the application of fractal geometry to characterisation of flocs and aggregates is followed by a discussion of the strengths and limitations of the above techniques. Of the scattering techniques available, light scattering provides the greatest potential for use as a tool for structure characterisation even though interpretation of the scattered intensity pattern is complicated by the strong interaction of light and matter. Restructuring further complicates the analysis. Although settling has long been used to characterise particle behaviour, the absence of an accurate permeability model limits the technique as a means of determining the porosity of fractal aggregates. However, it can be argued that the determination of fractal dimension is relatively unaffected. The strength of image analysis lies in its ability to provide a great deal of information about particle morphology and the weaknesses lie in the difficulties with image processing and sample size as this is a particle counting technique. There are very few papers which compare the fractal dimension measured by more than one technique. Light scattering potentially provides a useful tool for checking settling results. However, further work is required to develop proper models for aggregate permeability and flow-through effects.


Journal of Photochemistry and Photobiology A-chemistry | 2002

Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles

Veronica Vamathevan; Rose Amal; Donia Beydoun; Gary Low; Stephen R. McEvoy

The simultaneous photocatalytic degradation of organic compounds and reduction of silver ions in titanium dioxide suspensions at pH 3.0-3.5 has been studied. The organic compounds of interest were sucrose and salicylic acid. The presence of silver ions in TiO 2 suspensions was found to enhance the photooxidation of high loadings (2001) μgC) of sucrose. However, for low sucrose loadings (100 μg C), pure TiO 2 particles performed as well as modified TiO 2 particles. An optimum silver ion loading of 2.0 at.% Ag + was observed for the mineralisation of 2000 μg C sucrose. At this silver ion loading, the mineralisation of 2000 μg C sucrose was enhanced by a factor of approximately 4.0 (based on 90% overall oxidation rates). In contrast, the addition of silver ions to TiO 2 suspensions did not have any significant effect on the photocatalytic mineralisation of salicylic acid to carbon dioxide, for both low and high loadings of salicylic acid in the suspension. It was also observed that pure TiO 2 particles performed as well as silver-modified TiO 2 particles for the degradation of 2000 μg C salicylic acid. The higher activity of silver ion-modified titanium dioxide suspensions for sucrose mineralisation is predominantly due to the presence of small silver particles on the titania surface, rather than due to the trapping of electrons during the reduction of silver ions. Approximately 50% of the initial mass of silver ions added to TiO 2 suspensions were reduced to metallic silver deposits in the presence of sucrose and salicylic acid mineralisation at the 2.0 at.% Ag + loading. Nanosize silver deposits on TiO 2 particles act as sites of electron accumulation where the reduction of adsorbed species such as oxygen occur. The enhanced reduction of oxygen through better electron-hole separation in Ag/TiO 2 particles compared to pure TiO 2 particles increases the rate of sucrose mineralisation. Therefore, it is proposed that the rate-limiting step in the sucrose photooxidation reaction is the transfer of electrons to dissolved oxygen molecules, whereas in the case of salicylic acid degradation and mineralisation, the rate-limiting step is the attack of salicylic acid molecules and its degradation intermediate products by holes and hydroxyl radicals. Hence silver deposits on TiO 2 particles are not beneficial for the photocatalytic degradation and mineralisation of salicylic acid but are advantageous for the mineralisation of sucrose.


Journal of Physical Chemistry Letters | 2012

Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors

Wey Yang Teoh; Jason Scott; Rose Amal

The field of heterogeneous photocatalysis has expanded rapidly in the last four decades, having undergone various evolutionary phases related to energy and the environment. The two most significant applications of photocatalysis are geared toward solar water splitting and the purification of air and water. Notably, the interdisciplinary nature of the field has increased significantly, incorporating semiconductor physics, surface sciences, photo and physical chemistry, materials science, and chemical engineering. Whereas this forms the basis on which the field continues to grow, adequate bridging of multidisciplinary knowledge remains essential. By recalling some of the classical fundamentals of photocatalysis, this Perspective provides contemporary views on heterogeneous photochemical conversion, encompassing charge transport characteristics, radical chemistry and organic degradation mechanisms, photocatalyst design, and photoreactor engineering.


Powder Technology | 1998

Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks

Patrick T. Spicer; Sotiris E. Pratsinis; Judy A Raper; Rose Amal; Graeme Bushell; Gabrie M.H. Meesters

The effect of shear history on the evolution of the polystyrene—alum floc size, density, and structure is investigated by small-angle light scattering during cycled-shear and tapered-shear flocculation in a stirred tank using a Rushton impeller. First, various sampling schemes are experimentally evaluated. The floc structure is characterized by the mass fractal dimension, Df, and the relative floc density. During turbulent shear flocculation, small floc structures are shown to be more open (Df = 2.1) than larger floc structures (Df = 2.5) as a result of shear-induced restructuring during steady state attainment. Flocs produced by cycled-shear flocculation are grown at shear rate G-50 s−1 for 30 min, are fragmented at Gb = 100, 300, or 500 s−1 for one minute, and then are regrown at G = 50 s−1. This shear schedule decreases the floc size but compacts the floc structure. When flocs are produced by gradual reduction of the shear rate from G-300 to 50 s−1 (tapered-shear flocculation), smaller though equally dense flocs are produced compared with cycled-shear flocculation. The cycled-shear flocculation method produces the largest flocs with the highest potential for sedimentation when the fragmentation shear rate is Gb = 300 s−1.


Journal of the American Chemical Society | 2015

Z-Schematic Water Splitting into H2 and O2 Using Metal Sulfide as a Hydrogen-Evolving Photocatalyst and Reduced Graphene Oxide as a Solid-State Electron Mediator

Katsuya Iwashina; Akihide Iwase; Yun Hau Ng; Rose Amal; Akihiko Kudo

Z-schematic water splitting was successfully demonstrated using metal sulfide photocatalysts that were usually unsuitable for water splitting as single particulate photocatalysts due to photocorrosion. When metal sulfide photocatalysts with a p-type semiconductor character as a H2-evolving photocatalyst were combined with reduced graphene oxide-TiO2 composite as an O2-evolving photocatalyst, water splitting into H2 and O2 in a stoichiometric amount proceeded. In this system, photogenerated electrons in the TiO2 with an n-type semiconductor character transferred to the metal sulfide through a reduced graphene oxide to achieve water splitting. Moreover, this system was active for solar water splitting.


Journal of Physical Chemistry Letters | 2011

Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole-doping and Sensitization for Visible Light Response

Aijun Du; Yun Hau Ng; Nicholas J. Bell; Zhonghua Zhu; Rose Amal; Sean C. Smith

We demonstrated for the first time by large-scale ab initio calculations that a graphene/titania interface in the ground electronic state forms a charge-transfer complex due to the large difference of work functions between graphene and titania, leading to substantial hole doping in graphene. Interestingly, electrons in the upper valence band can be directly excited from graphene to the conduction band, that is, the 3d orbitals of titania, under visible light irradiation. This should yield well-separated electron-hole pairs, with potentially high photocatalytic or photovoltaic performance in hybrid graphene and titania nanocomposites. Experimental wavelength-dependent photocurrent generation of the graphene/titania photoanode demonstrated noticeable visible light response and evidently verified our ab initio prediction.


Advanced Materials | 2012

In Situ Growth of a ZnO Nanowire Network within a TiO2 Nanoparticle Film for Enhanced Dye‐Sensitized Solar Cell Performance

Yang Bai; Hua Yu; Zhen Li; Rose Amal; Gao Qing Max Lu; Lianzhou Wang

ZnO nanowire networks featuring excellent charge transport and light scattering properties are grown in situ within TiO(2) films. The resultant TiO(2) /ZnO composites, used as photoanodes, remarkably enhance the overall conversion efficiency of dye-sensitized solar cells (DSSCs) by 26.9%, compared to that of benchmark TiO(2) films.

Collaboration


Dive into the Rose Amal's collaboration.

Top Co-Authors

Avatar

Yun Hau Ng

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Jason Scott

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

May Lim

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Wey Yang Teoh

Australian Research Council

View shared research outputs
Top Co-Authors

Avatar

Judy A Raper

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sanly Liu

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Donia Beydoun

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

T.D. Waite

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Cindy Gunawan

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Ken Chiang

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge