Sanly Liu
University of New South Wales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sanly Liu.
Chemosphere | 2008
Sanly Liu; May Lim; Rolando Fabris; Christopher W.K. Chow; Ken Chiang; Mary Drikas; Rose Amal
The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV(254) absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV(254) absorbance. The THMFPs of samples were decreased to below 20 microg l(-1) after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.
Water Research | 2010
Sanly Liu; May Lim; Rolando Fabris; Christopher W.K. Chow; Mary Drikas; Gregory V. Korshin; Rose Amal
The effect of TiO2 photocatalytic oxidation on the natural organic matter (NOM) properties of two Australian surface waters were quantified using UV-vis spectroscopy, high performance size exclusion chromatography (HPSEC) with a multi-wavelength UV detector, liquid chromatography with organic carbon detector (LC-OCD), and trihalomethane formation potential (THMFP) analyses. Both the UV absorbance at wavelengths greater than 250 nm and dissolved organic carbon (DOC) content decreased significantly with treatment, although complete mineralization of NOM could not be achieved. Multi-wavelength UV detection of HPSEC analysis was shown to be useful to display further changes to NOM composition and molecular weight profiles because the organic molecules was transformed into compounds that absorb weakly at the typical detection wavelength of 250-260 nm. The multi-wavelength HPSEC results also revealed that photocatalytic oxidation yields by-products with a low aromaticity and low molecular weight. The LC-OCD chromatograms indicated that low molecular acids and neutral compounds remained after photocatalytic oxidation. Those groups of compounds did not seem to contribute significantly to the formation of trihalomethanes.
Water Research | 2012
Mega Ng; Ayu Ekajayanthi Liana; Sanly Liu; May Lim; Christopher W.K. Chow; Dongsheng Wang; Mary Drikas; Rose Amal
In this study, the formulation of a novel polyaluminum chloride-chitosan composite coagulant that improves the coagulation process for natural organic matter (NOM) removal was investigated. The performance of the composite coagulant was tested using two water sources (synthetic and natural water) to develop a better understanding on the behaviour of the composite coagulant. Fourier Transform-Infra red (FT-IR) spectroscopy, ferron analysis and zeta potential studies were performed to characterise the composite coagulant. FT-IR analysis showed that there is an intermolecular interaction between Al species and chitosan molecules, while ferron analysis indicated that the distributions of Al(a), Al(b), and Al(c) in PACl-chitosan are different from those in PACl. At a low Al dosage (2.16 mg L⁻¹), a much higher removal of NOM from synthetic water, as evidenced from UV₂₅₄ and Dissolved Organic Carbon (DOC) measurements, was achieved by the composite coagulants in comparison to that removed by PACl or PACl and chitosan added separately. For natural water from the Myponga Reservoir, both polyaluminum chloride (PACl) and PACl-chitosan composite coagulants demonstrated similar dissolved organic carbon (DOC) percentage removal, whereas PACl-chitosan gave a slight improvement in removing the UV₂₅₄ absorbing components of NOM.
Molecules | 2014
Yossy Wicaksana; Sanly Liu; Jason Scott; Rose Amal
Tungsten trioxide (WO3) has been demonstrated to possess visible light photoactivity and presents a means of overcoming the UV-light dependence of photocatalysts, such as titanium dioxide. In this study, WO3 nanostructures have been synthesised by a hydrothermal method using sodium tungstate (Na2WO4·2H2O), sulphate precursors and pH as structure-directing agents and parameters, respectively. By altering the concentration of the sulphate precursors and pH, it was shown that different morphologies and phases of WO3 can be achieved. The effect of the morphology of the final WO3 product on the visible light photoactivity of ethylene degradation in the gas phase was investigated. In addition, platinum (Pt) was photodeposited on the WO3 structures with various morphologies to enhance the photocatalytic properties. It was found that the photocatalytic properties of the WO3 samples greatly depend on their morphology, chemical composition and surface modification. WO3 with a cuboid morphology exhibited the highest visible light photoactivity compared to other morphologies, while adding Pt to the surface improved the performance of certain WO3 structures.
Journal of Hazardous Materials | 2013
Mega Ng; Sanly Liu; Christopher W.K. Chow; Mary Drikas; Rose Amal; May Lim
In this study, we investigated the relationship between water characteristics and removal of natural organic matter (NOM) using polyaluminium chloride (PACl) and a newly developed coagulant obtained by hybridising PACl with chitosan (PACl-chitosan) for two different types of water. Using UV-visible spectroscopy analysis, we showed that PACl-chitosan is more effective than PACl for treating water samples that contain higher levels of activated polyhydroxyaromatic moieties. As a result, a lower level of total trihalomethanes formation potential (THMFP) was detected for synthetic water treated with PACl-chitosan coagulant compared to water treated with PACl only. In contrast, no difference was observed for the total THMFP that were formed following coagulation with either coagulant, for water sample containing the same level of organic carbon concentration, but lower levels of polyhydroxyaromatic moieties. Our work shows how the complex characteristics and interactions of organic matter with coagulant component can affect the outcome of the treatment process, and in this case, enhance the treatment. The use of PACl-chitosan was also shown to produce larger floc for both water samples; this again, can lead to better removal.
CrystEngComm | 2011
Tao Tao; Alexey M. Glushenkov; Qiyuan Chen; Huiping Hu; Dan Zhou; Hongzhou Zhang; Markus Boese; Sanly Liu; Rose Amal; Ying Chen
Ilmenite (FeTiO3) is an inexpensive abundant natural mineral and it would be a perfect precursor for the production of porous TiO2 if a suitable synthesis method was developed. A new method combining a series of processing steps of ball milling, high-temperature annealing, selective chemical leaching and final calcining in air is proposed in this paper. The resulting TiO2 is a porous material with a bimodal pore structure. The pore size distribution has two clear maxima corresponding to small mesopores (2–30 nm) and large meso- and macropores (centered at around 50–80 nm). It was found that the duration of the annealing step could alter the contribution of each type of pores. A short annealing time (0.5 h) lead to the preferential formation of pores within 2–30 nm while pores centered at 50–80 nm dominated the pore size distribution after a relatively long annealing (1.5 h). The obtained porous rutile TiO2 shows a better photocatalytic activity than that of a commercial rutile TiO2 powder.
ACS Applied Materials & Interfaces | 2015
Vita Wonoputri; Cindy Gunawan; Sanly Liu; Nicolas Barraud; Lachlan H. Yee; May Lim; Rose Amal
In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms.
Chemistry: A European Journal | 2013
Tao Tao; Ying Chen; Dan Zhou; Hongzhou Zhang; Sanly Liu; Rose Amal; Neeraj Sharma; Alexey M. Glushenkov
The mineral ilmenite is one of the most abundant ores in the Earths crust and it is the main source for the industrial production of bulk titanium oxide. At the same time, methods to convert ilmenite into nanostructures of TiO(2) (which are required for new advanced applications, such as solar cells, batteries, and photocatalysts) have not been explored to any significant extent. Herein, we describe a simple and effective method for the preparation of rutile TiO(2) nanorods from ball-milled ilmenite. These nanorods have small dimensions (width: 5-20 nm, length: 50-100 nm, thickness: 2-5 nm) and possess large specific surface areas (up to 97 m(2) g(-1)). Dissolution/hydrolysis/precipitation is proposed as a growth mechanism. The nanorods were found to have attractive photocatalytic properties in the degradation of oxalic acid. Their photocatalytic activity is close to that of the benchmark Degussa P25 material and better than that of a commercial high-surface-area rutile powder.
RSC Advances | 2014
Sanly Liu; Elizabeth Killen; May Lim; Cindy Gunawan; Rose Amal
This study provides a thorough investigation on the effects of the commonly-employed microbial growth medium, namely the peptide-containing luria-bertani broth, tryptic soy broth, the glucose-containing M9 Minimal Salts Media as well as phosphate-buffered saline solution on the dissolution and microstructural transformation of zinc oxide thin film. Morphology and chemical composition of the ZnO film after incubation in the media was thoroughly characterised. In addition, the amount and rate of soluble zinc released by the ZnO thin films was quantified. Exposure of ZnO thin film in the different growth media saw formation of new zinc compounds, resulting from various chemical reactions of zinc with the medium components. Deposition of the new zinc compounds on top of the thin film caused morphological transformation of the film. Zinc leaching was observed in all of the tested media, with significantly higher extent of dissolution observed in peptide-containing organic media, such as luria bertani and tryptic soy broth. Complex organic components, such as amino acids and peptides form complexes with zinc oxide coatings, resulting in complexation-mediated leaching of zinc. Soluble zinc re-precipitates with components in the media, and therefore substantially reduced the amount of dissolved zinc. The results suggest strong influence of solution chemistry on ZnO speciation in a test medium, which have important implications for the mechanistic interpretation of ZnO toxicity.
Journal of Environmental Sciences-china | 2017
Sina Moradi; Sanly Liu; Christopher W.K. Chow; John van Leeuwen; David Cook; Mary Drikas; Rose Amal
The management of chloramine decay and the prevention of nitrification are some of the critical issues faced by water utilities that use chloramine as a disinfectant. In this study, potential association between high performance size exclusion chromatography (HPSEC) data obtained with multiple wavelength Ultraviolet (UV) detection from two drinking water distribution systems in Australia and nitrification occurrence was investigated. An increase in the absorbance signal of HPSEC profiles with UV detection at λ=230nm between apparent molecular weights of 200 to 1000Da was observed at sampling sites that experienced rapid chloramine decay and nitrification while its absorbance signal at λ=254nm decreased. A chloramine decay index (C.D.I) defined as the ratio of area beneath the HPSEC spectra at two different wavelengths of 230 and 254nm, was used in assessing chloramine decay occurrences. The C.D.Is of waters at locations that experienced nitrification were consistently higher than locations not experiencing nitrification. A simulated laboratory study showed that the formation of nitrite/nitrate and/or soluble microbial products and/or the release of extracellular polymeric substances (EPS) during nitrification may contribute to the C.D.I. increase. These findings suggest that C.D.I derived from HPSEC with multiple wavelength UV detection could be an informative index to track the occurrence of rapid chloramine decay and nitrification.