Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosemary Burke is active.

Publication


Featured researches published by Rosemary Burke.


Science | 2018

Patient-derived organoids model treatment response of metastatic gastrointestinal cancers

Georgios Vlachogiannis; Somaieh Hedayat; Alexandra Vatsiou; Yann Jamin; Javier Fernández-Mateos; Khurum Khan; Andrea Lampis; Katherine Eason; Ian Said Huntingford; Rosemary Burke; Mihaela Rata; Dow-Mu Koh; Nina Tunariu; David J. Collins; Sanna Hulkki-Wilson; Chanthirika Ragulan; Inmaculada Spiteri; Sing Yu Moorcraft; Ian Chau; Sheela Rao; David Watkins; Nicos Fotiadis; Maria Antonietta Bali; Mahnaz Darvish-Damavandi; Hazel Lote; Zakaria Eltahir; Elizabeth C. Smyth; Ruwaida Begum; Paul A. Clarke; Jens Claus Hahne

Cancer organoids to model therapy response Cancer organoids are miniature, three-dimensional cell culture models that can be made from primary patient tumors and studied in the laboratory. Vlachogiannis et al. asked whether such “tumor-in-a-dish” approaches can be used to predict drug responses in the clinic. They generated a live organoid biobank from patients with metastatic gastrointestinal cancer who had previously been enrolled in phase I or II clinical trials. This allowed the authors to compare organoid drug responses with how the patient actually responded in the clinic. Encouragingly, the organoids had similar molecular profiles to those of the patient tumor, reinforcing their value as a platform for drug screening and development. Science, this issue p. 920 Organoids can recapitulate patient responses in the clinic, with potential for drug screening and personalized medicine. Patient-derived organoids (PDOs) have recently emerged as robust preclinical models; however, their potential to predict clinical outcomes in patients has remained unclear. We report on a living biobank of PDOs from metastatic, heavily pretreated colorectal and gastroesophageal cancer patients recruited in phase 1/2 clinical trials. Phenotypic and genotypic profiling of PDOs showed a high degree of similarity to the original patient tumors. Molecular profiling of tumor organoids was matched to drug-screening results, suggesting that PDOs could complement existing approaches in defining cancer vulnerabilities and improving treatment responses. We compared responses to anticancer agents ex vivo in organoids and PDO-based orthotopic mouse tumor xenograft models with the responses of the patients in clinical trials. Our data suggest that PDOs can recapitulate patient responses in the clinic and could be implemented in personalized medicine programs.


Journal of Medicinal Chemistry | 2013

Structure-based design of orally bioavailable 1H-pyrrolo[3,2-c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1).

Sébastien Naud; Isaac M. Westwood; Amir Faisal; Peter Sheldrake; Vassilios Bavetsias; Butrus Atrash; Kwai-Ming J. Cheung; Manjuan Liu; Angela Hayes; Jessica Schmitt; Amy Wood; Vanessa Choi; Kathy Boxall; Grace Mak; Mark Gurden; Melanie Valenti; Alexis de Haven Brandon; Alan T. Henley; Ross Baker; Craig McAndrew; Berry Matijssen; Rosemary Burke; Swen Hoelder; Suzanne A. Eccles; Florence I. Raynaud; Spiros Linardopoulos; Rob L. M. van Montfort; Julian Blagg

The protein kinase MPS1 is a crucial component of the spindle assembly checkpoint signal and is aberrantly overexpressed in many human cancers. MPS1 is one of the top 25 genes overexpressed in tumors with chromosomal instability and aneuploidy. PTEN-deficient breast tumor cells are particularly dependent upon MPS1 for their survival, making it a target of significant interest in oncology. We report the discovery and optimization of potent and selective MPS1 inhibitors based on the 1H-pyrrolo[3,2-c]pyridine scaffold, guided by structure-based design and cellular characterization of MPS1 inhibition, leading to 65 (CCT251455). This potent and selective chemical tool stabilizes an inactive conformation of MPS1 with the activation loop ordered in a manner incompatible with ATP and substrate-peptide binding; it displays a favorable oral pharmacokinetic profile, shows dose-dependent inhibition of MPS1 in an HCT116 human tumor xenograft model, and is an attractive tool compound to elucidate further the therapeutic potential of MPS1 inhibition.


Journal of Medicinal Chemistry | 2013

Aurora Isoform Selectivity: Design and Synthesis of Imidazo[4,5-B]Pyridine Derivatives as Highly Selective Inhibitors of Aurora-A Kinase in Cells.

Vassilios Bavetsias; Amir Faisal; Simon Crumpler; Nathan Brown; Magda N. Kosmopoulou; Amar Joshi; Butrus Atrash; Yolanda Pérez-Fuertes; Jessica Schmitt; Katherine J. Boxall; Rosemary Burke; Chongbo Sun; Sian Avery; Katherine Bush; Alan T. Henley; Florence I. Raynaud; Paul Workman; Richard Bayliss; Spiros Linardopoulos; Julian Blagg

Aurora-A differs from Aurora-B/C at three positions in the ATP-binding pocket (L215, T217, and R220). Exploiting these differences, crystal structures of ligand–Aurora protein interactions formed the basis of a design principle for imidazo[4,5-b]pyridine-derived Aurora-A-selective inhibitors. Guided by a computational modeling approach, appropriate C7-imidazo[4,5-b]pyridine derivatization led to the discovery of highly selective inhibitors, such as compound 28c, of Aurora-A over Aurora-B. In HCT116 human colon carcinoma cells, 28c and 40f inhibited the Aurora-A L215R and R220K mutants with IC50 values similar to those seen for the Aurora-A wild type. However, the Aurora-A T217E mutant was significantly less sensitive to inhibition by 28c and 40f compared to the Aurora-A wild type, suggesting that the T217 residue plays a critical role in governing the observed isoform selectivity for Aurora-A inhibition. These compounds are useful small-molecule chemical tools to further explore the function of Aurora-A in cells.


Journal of Medicinal Chemistry | 2016

8-Substituted Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors.

Vassilios Bavetsias; Rachel M. Lanigan; Gian Filippo Ruda; Butrus Atrash; Mark McLaughlin; Anthony Tumber; N. Yi Mok; Yann-Vaï Le Bihan; Sally Dempster; Katherine J. Boxall; F. Jeganathan; Stephanie B. Hatch; P. Savitsky; S. Velupillai; T. Krojer; Katherine S. England; Jimmy Sejberg; Ching Thai; Adam Donovan; Akos Pal; Giuseppe Scozzafava; James M. Bennett; Akane Kawamura; C. Johansson; A. Szykowska; C. Gileadi; N. Burgess-Brown; Frank von Delft; U. Oppermann; Zoë S. Walters

We report the discovery of N-substituted 4-(pyridin-2-yl)thiazole-2-amine derivatives and their subsequent optimization, guided by structure-based design, to give 8-(1H-pyrazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-ones, a series of potent JmjC histone N-methyl lysine demethylase (KDM) inhibitors which bind to Fe(II) in the active site. Substitution from C4 of the pyrazole moiety allows access to the histone peptide substrate binding site; incorporation of a conformationally constrained 4-phenylpiperidine linker gives derivatives such as 54j and 54k which demonstrate equipotent activity versus the KDM4 (JMJD2) and KDM5 (JARID1) subfamily demethylases, selectivity over representative exemplars of the KDM2, KDM3, and KDM6 subfamilies, cellular permeability in the Caco-2 assay, and, for 54k, inhibition of H3K9Me3 and H3K4Me3 demethylation in a cell-based assay.


MedChemComm | 2013

Development and evaluation of selective, reversible LSD1 inhibitors derived from fragments

James R. Hitchin; Julian Blagg; Rosemary Burke; Samantha Burns; Mark Cockerill; Emma Fairweather; Colin Hutton; Allan M. Jordan; Craig McAndrew; Amin Mirza; Daniel Mould; Graeme J. Thomson; Ian Waddell; Donald J. Ogilvie

Two series of aminothiazoles have been developed as reversible inhibitors of lysine specific demethylase 1 (LSD1) through the expansion of a hit derived from a high concentration biochemical fragment based screen of 2466 compounds. The potency of the initial fragment hit was increased 32-fold through synthesis, with one series of compounds showing clear structure–activity relationships and inhibitory activities in the range of 7 to 187 μM in a biochemical assay. This series also showed selectivity against the related FAD-dependent enzyme mono-amine oxidase A (MAO-A). Although a wide range of irreversible inhibitors of LSD1 have been reported with activities in the low nanomolar range, this work represents one of the first reported examples of a reversible small molecule inhibitor of LSD1 with clear SAR and selectivity against MAO-A, and could provide a platform for the development of more potent reversible inhibitors. Herein, we also report the use of a recently developed cell-based assay for profiling LSD1 inhibitors, and present results on our own compounds as well as a selection of recently described reversible LSD1 inhibitors.


Journal of Medicinal Chemistry | 2016

Discovery of Potent, Selective, and Orally Bioavailable Small-Molecule Modulators of the Mediator Complex-Associated Kinases CDK8 and CDK19

Aurélie Mallinger; Kai Schiemann; Christian Rink; Frank Stieber; Michel Calderini; Simon Crumpler; Mark Stubbs; Olajumoke Adeniji-Popoola; Oliver Poeschke; Michael Busch; Paul Czodrowski; Djordje Musil; Daniel Schwarz; Maria-Jesus Ortiz-Ruiz; Richard Schneider; Ching Thai; Melanie Valenti; Alexis de Haven Brandon; Rosemary Burke; Paul Workman; Trevor Clive Dale; Dirk Wienke; Paul A. Clarke; Christina Esdar; Florence I. Raynaud; Suzanne A. Eccles; Felix Rohdich; Julian Blagg

The Mediator complex-associated cyclin-dependent kinase CDK8 has been implicated in human disease, particularly in colorectal cancer where it has been reported as a putative oncogene. Here we report the discovery of 109 (CCT251921), a potent, selective, and orally bioavailable inhibitor of CDK8 with equipotent affinity for CDK19. We describe a structure-based design approach leading to the discovery of a 3,4,5-trisubstituted-2-aminopyridine series and present the application of physicochemical property analyses to successfully reduce in vivo metabolic clearance, minimize transporter-mediated biliary elimination while maintaining acceptable aqueous solubility. Compound 109 affords the optimal compromise of in vitro biochemical, pharmacokinetic, and physicochemical properties and is suitable for progression to animal models of cancer.


PLOS ONE | 2013

Fragment-Based Screening Maps Inhibitor Interactions in the ATP-Binding Site of Checkpoint Kinase 2.

M. Cris Silva-Santisteban; Isaac M. Westwood; Kathy Boxall; Nathan Brown; Sam Peacock; Craig McAndrew; Elaine Barrie; Meirion Richards; Amin Mirza; Antony W. Oliver; Rosemary Burke; Swen Hoelder; Keith Jones; G. Wynne Aherne; Julian Blagg; Ian Collins; Michelle D. Garrett; Rob L. M. van Montfort

Checkpoint kinase 2 (CHK2) is an important serine/threonine kinase in the cellular response to DNA damage. A fragment-based screening campaign using a combination of a high-concentration AlphaScreen™ kinase assay and a biophysical thermal shift assay, followed by X-ray crystallography, identified a number of chemically different ligand-efficient CHK2 hinge-binding scaffolds that have not been exploited in known CHK2 inhibitors. In addition, it showed that the use of these orthogonal techniques allowed efficient discrimination between genuine hit matter and false positives from each individual assay technology. Furthermore, the CHK2 crystal structures with a quinoxaline-based fragment and its follow-up compound highlight a hydrophobic area above the hinge region not previously explored in rational CHK2 inhibitor design, but which might be exploited to enhance both potency and selectivity of CHK2 inhibitors.


Journal of Medicinal Chemistry | 2016

Exploiting Protein Conformational Change to Optimize Adenosine-Derived Inhibitors of HSP70.

Cheeseman; Isaac M. Westwood; Olivier Remi Barbeau; Martin G. Rowlands; S.E. Dobson; Alan M. Jones; F. Jeganathan; Rosemary Burke; N. Kadi; Paul Workman; Ian Collins; R.L.M. Van Montfort; Keith Jones

HSP70 is a molecular chaperone and a key component of the heat-shock response. Because of its proposed importance in oncology, this protein has become a popular target for drug discovery, efforts which have as yet brought little success. This study demonstrates that adenosine-derived HSP70 inhibitors potentially bind to the protein with a novel mechanism of action, the stabilization by desolvation of an intramolecular salt-bridge which induces a conformational change in the protein, leading to high affinity ligands. We also demonstrate that through the application of this mechanism, adenosine-derived HSP70 inhibitors can be optimized in a rational manner.


Oncotarget | 2016

Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumors.

Lynsey Vaughan; Paul A. Clarke; Karen Barker; Yvan Chanthery; Clay Gustafson; Elizabeth R. Tucker; Jane Renshaw; Florence I. Raynaud; Xiaodun Li; Rosemary Burke; Yann Jamin; Simon P. Robinson; Andrew D.J. Pearson; Michel Maira; William A. Weiss; Paul Workman; Louis Chesler

MYC oncoproteins deliver a potent oncogenic stimulus in several human cancers, making them major targets for drug development, but efforts to deliver clinically practical therapeutics have not yet been realized. In childhood cancer, aberrant expression of MYC and MYCN genes delineates a group of aggressive tumours responsible for a major proportion of pediatric cancer deaths. We designed a chemical-genetic screen that identifies compounds capable of enhancing proteasomal elimination of MYCN oncoprotein. We isolated several classes of compound that selectively kill MYCN expressing cells and we focus on inhibitors of PI3K/mTOR pathway in this study. We show that PI3K/mTOR inhibitors selectively killed MYCN-expressing neuroblastoma tumor cells, and induced significant apoptosis of transgenic MYCN-driven neuroblastoma tumors concomitant with elimination of MYCN protein in vivo. Mechanistically, the ability of these compounds to degrade MYCN requires complete blockade of mTOR but not PI3 kinase activity and we highlight NVP-BEZ235 as a PI3K/mTOR inhibitor with an ideal activity profile. These data establish that MYCN expression is a marker indicative of likely clinical sensitivity to mTOR inhibition, and provide a rationale for the selection of clinical candidate MYCN-destabilizers likely to be useful for the treatment of MYCN-driven cancers.


Journal of Medicinal Chemistry | 2016

Rapid Discovery of Pyrido[3,4-d]pyrimidine Inhibitors of Monopolar Spindle Kinase 1 (MPS1) Using a Structure-Based Hybridization Approach.

Paolo Innocenti; Hannah Woodward; Savade Solanki; Sébastien Naud; Isaac M. Westwood; Nora Cronin; Angela Hayes; Jennie Roberts; Alan T. Henley; Ross Baker; Amir Faisal; Grace Mak; Gary Box; Melanie Valenti; Alexis de Haven Brandon; Lisa O’Fee; Harry Saville; Jessica Schmitt; Berry Matijssen; Rosemary Burke; Rob L. M. van Montfort; Florence I. Raynaud; Suzanne A. Eccles; Spiros Linardopoulos; Julian Blagg; Swen Hoelder

Monopolar spindle 1 (MPS1) plays a central role in the transition of cells from metaphase to anaphase and is one of the main components of the spindle assembly checkpoint. Chromosomally unstable cancer cells rely heavily on MPS1 to cope with the stress arising from abnormal numbers of chromosomes and centrosomes and are thus more sensitive to MPS1 inhibition than normal cells. We report the discovery and optimization of a series of new pyrido[3,4-d]pyrimidine based inhibitors via a structure-based hybridization approach from our previously reported inhibitor CCT251455 and a modestly potent screening hit. Compounds in this novel series display excellent potency and selectivity for MPS1, which translates into biomarker modulation in an in vivo human tumor xenograft model.

Collaboration


Dive into the Rosemary Burke's collaboration.

Top Co-Authors

Avatar

Julian Blagg

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Florence I. Raynaud

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Paul Workman

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amir Faisal

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Isaac M. Westwood

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Spiros Linardopoulos

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Suzanne A. Eccles

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Swen Hoelder

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Angela Hayes

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge