Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roslyn M. Bill is active.

Publication


Featured researches published by Roslyn M. Bill.


Nature Biotechnology | 2011

Overcoming barriers to membrane protein structure determination.

Roslyn M. Bill; Peter J. F. Henderson; So Iwata; Edmund R. S. Kunji; Hartmut Michel; Richard Neutze; Simon Newstead; Berend Poolman; Christopher G. Tate; Horst Vogel

After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new approaches to solving membrane protein structures based on recent technological advances. Rational approaches to overcoming the bottlenecks in the field are urgently required as membrane proteins, which typically comprise ∼30% of the proteomes of organisms, are dramatically under-represented in the structural database of the Protein Data Bank.


EMBO Reports | 2004

Switching the mode of metabolism in the yeast Saccharomyces cerevisiae .

Karin Otterstedt; Christer Larsson; Roslyn M. Bill; Anders Ståhlberg; Eckhard Boles; Stefan Hohmann; Lena Gustafsson

The biochemistry of most metabolic pathways is conserved from bacteria to humans, although the control mechanisms are adapted to the needs of each cell type. Oxygen depletion commonly controls the switch from respiration to fermentation. However, Saccharomyces cerevisiae also controls that switch in response to the external glucose level. We have generated an S. cerevisiae strain in which glucose uptake is dependent on a chimeric hexose transporter mediating reduced sugar uptake. This strain shows a fully respiratory metabolism also at high glucose levels as seen for aerobic organisms, and switches to fermentation only when oxygen is lacking. These observations illustrate that manipulating a single step can alter the mode of metabolism. The novel yeast strain is an excellent tool to study the mechanisms underlying glucose‐induced signal transduction.


Trends in Microbiology | 2000

Microbial MIP channels

Stefan Hohmann; Roslyn M. Bill; Gerald Kayingo; Bernard A. Prior

MIP channels occur in all classes of organism ranging from bacteria to man. There are two major categories of MIP channels, aquaporins and glycerol facilitators, which facilitate the diffusion across biological membranes of water or glycerol and other uncharged compounds, respectively. As a result of their involvement in osmoregulation and metabolism, MIP channels are believed to affect a wide range of biological processes.


Biochimica et Biophysica Acta | 2014

Human aquaporins: regulators of transcellular water flow

Rebecca E. Day; Philip Kitchen; David Owen; Charlotte E. Bland; Lindsay J. Marshall; Alex C. Conner; Roslyn M. Bill; Matthew T. Conner

BACKGROUND Emerging evidence supports the view that (AQP) aquaporin water channels are regulators of transcellular water flow. Consistent with their expression in most tissues, AQPs are associated with diverse physiological and pathophysiological processes. SCOPE OF REVIEW AQP knockout studies suggest that the regulatory role of AQPs, rather than their action as passive channels, is their critical function. Transport through all AQPs occurs by a common passive mechanism, but their regulation and cellular distribution varies significantly depending on cell and tissue type; the role of AQPs in cell volume regulation (CVR) is particularly notable. This review examines the regulatory role of AQPs in transcellular water flow, especially in CVR. We focus on key systems of the human body, encompassing processes as diverse as urine concentration in the kidney to clearance of brain oedema. MAJOR CONCLUSIONS AQPs are crucial for the regulation of water homeostasis, providing selective pores for the rapid movement of water across diverse cell membranes and playing regulatory roles in CVR. Gating mechanisms have been proposed for human AQPs, but have only been reported for plant and microbial AQPs. Consequently, it is likely that the distribution and abundance of AQPs in a particular membrane is the determinant of membrane water permeability and a regulator of transcellular water flow. GENERAL SIGNIFICANCE Elucidating the mechanisms that regulate transcellular water flow will improve our understanding of the human body in health and disease. The central role of specific AQPs in regulating water homeostasis will provide routes to a range of novel therapies. This article is part of a Special Issue entitled Aquaporins.


Applied and Environmental Microbiology | 2004

Role of Hexose Transport in Control of Glycolytic Flux in Saccharomyces cerevisiae

Karin Elbing; Christer Larsson; Roslyn M. Bill; Eva Albers; Jacky L. Snoep; Eckhard Boles; Stefan Hohmann; Lena Gustafsson

ABSTRACT The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeasts glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.


Acta Crystallographica Section D-biological Crystallography | 2006

Eukaryotic expression: developments for structural proteomics

Alexandru Radu Aricescu; R. Assenberg; Roslyn M. Bill; Didier Busso; Veronica T. Chang; Simon J. Davis; A. Dubrovsky; Lena Gustafsson; Kristina Hedfalk; Udo Heinemann; Ian M. Jones; D. Ksiazek; Chim C Lang; K. Maskos; Albrecht Messerschmidt; S. Macieira; Yoav Peleg; Anastassis Perrakis; Arnaud Poterszman; G. Schneider; Titia K. Sixma; Joel L. Sussman; Geoffrey C. Sutton; N. Tarboureich; Tzviya Zeev-Ben-Mordehai; E. Yvonne Jones

The production of sufficient quantities of protein is an essential prelude to a structure determination, but for many viral and human proteins this cannot be achieved using prokaryotic expression systems. Groups in the Structural Proteomics In Europe (SPINE) consortium have developed and implemented high‐throughput (HTP) methodologies for cloning, expression screening and protein production in eukaryotic systems. Studies focused on three systems: yeast (Pichia pastoris and Saccharomyces cerevisiae), baculovirus‐infected insect cells and transient expression in mammalian cells. Suitable vectors for HTP cloning are described and results from their use in expression screening and protein‐production pipelines are reported. Strategies for co‐expression, selenomethionine labelling (in all three eukaryotic systems) and control of glycosylation (for secreted proteins in mammalian cells) are assessed.


Chemistry & Biology | 2001

Selective in vitro glycosylation of recombinant proteins: semi-synthesis of novel homogeneous glycoforms of human erythropoietin

Derek Macmillan; Roslyn M. Bill; Karen A Sage; Dominic Fern; Sabine L. Flitsch

BACKGROUND A natural glycoprotein usually exists as a spectrum of glycosylated forms, where each protein molecule may be associated with an array of oligosaccharide structures. The overall range of glycoforms can have a variety of different biophysical and biochemical properties, although details of structure-function relationships are poorly understood, because of the microheterogeneity of biological samples. Hence, there is clearly a need for synthetic methods that give access to natural and unnatural homogeneously glycosylated proteins. The synthesis of novel glycoproteins through the selective reaction of glycosyl iodoacetamides with the thiol groups of cysteine residues, placed by site-directed mutagenesis at desired glycosylation sites has been developed. This provides a general method for the synthesis of homogeneously glycosylated proteins that carry saccharide side chains at natural or unnatural glycosylation sites. Here, we have shown that the approach can be applied to the glycoprotein hormone erythropoietin, an important therapeutic glycoprotein with three sites of N-glycosylation that are essential for in vivo biological activity. RESULTS Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His(10)-WThEPO, His(10)-Asn24Cys, His(10)-Asn38Cys, His(10)-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l(-1) from Escherichia coli. Chemical glycosylation with glycosyl-beta-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. CONCLUSIONS Erythropoietin expressed in E. coli bearing specific Asn-->Cys mutations at natural glycosylation sites can be glycosylated using beta-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins.


Protein Science | 2005

Design of improved membrane protein production experiments: Quantitation of the host response

Nicklas Bonander; Kristina Hedfalk; Christer Larsson; Petter Mostad; Celia Chang; Lena Gustafsson; Roslyn M. Bill

Eukaryotic membrane proteins cannot be produced in a reliable manner for structural analysis. Consequently, researchers still rely on trial‐and‐error approaches, which most often yield insufficient amounts. This means that membrane protein production is recognized by biologists as the primary bottleneck in contemporary structural genomics programs. Here, we describe a study to examine the reasons for successes and failures in recombinant membrane protein production in yeast, at the level of the host cell, by systematically quantifying cultures in high‐performance bioreactors under tightly‐defined growth regimes. Our data show that the most rapid growth conditions of those chosen are not the optimal production conditions. Furthermore, the growth phase at which the cells are harvested is critical: We show that it is crucial to grow cells under tightly‐controlled conditions and to harvest them prior to glucose exhaustion, just before the diauxic shift. The differences in membrane protein yields that we observe under different culture conditions are not reflected in corresponding changes in mRNA levels of FPS1, but rather can be related to the differential expression of genes involved in membrane protein secretion and yeast cellular physiology.


Bioscience Reports | 2015

G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent

Mohammed Jamshad; Jack Charlton; Yu-Pin Lin; Sarah J. Routledge; Zharain Bawa; Timothy J. Knowles; Michael Overduin; Niek Dekker; Timothy R. Dafforn; Roslyn M. Bill; David R. Poyner; Mark Wheatley

G-protein coupled receptors (GPCRs) constitute the largest class of membrane proteins and are a major drug target. A serious obstacle to studying GPCR structure/function characteristics is the requirement to extract the receptors from their native environment in the plasma membrane, coupled with the inherent instability of GPCRs in the detergents required for their solubilization. In the present study, we report the first solubilization and purification of a functional GPCR [human adenosine A2A receptor (A2AR)], in the total absence of detergent at any stage, by exploiting spontaneous encapsulation by styrene maleic acid (SMA) co-polymer direct from the membrane into a nanoscale SMA lipid particle (SMALP). Furthermore, the A2AR–SMALP, generated from yeast (Pichia pastoris) or mammalian cells, exhibited increased thermostability (∼5°C) compared with detergent [DDM (n-dodecyl-β-D-maltopyranoside)]-solubilized A2AR controls. The A2AR–SMALP was also stable when stored for prolonged periods at 4°C and was resistant to multiple freeze-thaw cycles, in marked contrast with the detergent-solubilized receptor. These properties establish the potential for using GPCR–SMALP in receptor-based drug discovery assays. Moreover, in contrast with nanodiscs stabilized by scaffold proteins, the non-proteinaceous nature of the SMA polymer allowed unobscured biophysical characterization of the embedded receptor. Consequently, CD spectroscopy was used to relate changes in secondary structure to loss of ligand binding ([3H]ZM241385) capability. SMALP-solubilization of GPCRs, retaining the annular lipid environment, will enable a wide range of therapeutic targets to be prepared in native-like state to aid drug discovery and understanding of GPCR molecular mechanisms.


Microbial Cell Factories | 2009

Altering the ribosomal subunit ratio in yeast maximizes recombinant protein yield

Nicklas Bonander; Richard A.J. Darby; Ljuban Grgic; Nagamani Bora; Jikai Wen; Saverio Brogna; David R. Poyner; Michael A. A. O'Neill; Roslyn M. Bill

BackgroundThe production of high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences that has yet to be addressed in a truly rational manner. Typically eukaryotic protein production experiments have relied on varying expression construct cassettes such as promoters and tags, or culture process parameters such as pH, temperature and aeration to enhance yields. These approaches require repeated rounds of trial-and-error optimization and cannot provide a mechanistic insight into the biology of recombinant protein production. We published an early transcriptome analysis that identified genes implicated in successful membrane protein production experiments in yeast. While there has been a subsequent explosion in such analyses in a range of production organisms, no one has yet exploited the genes identified. The aim of this study was to use the results of our previous comparative transcriptome analysis to engineer improved yeast strains and thereby gain an understanding of the mechanisms involved in high-yielding protein production hosts.ResultsWe show that tuning BMS1 transcript levels in a doxycycline-dependent manner resulted in optimized yields of functional membrane and soluble protein targets. Online flow microcalorimetry demonstrated that there had been a substantial metabolic change to cells cultured under high-yielding conditions, and in particular that high yielding cells were more metabolically efficient. Polysome profiling showed that the key molecular event contributing to this metabolically efficient, high-yielding phenotype is a perturbation of the ratio of 60S to 40S ribosomal subunits from approximately 1:1 to 2:1, and correspondingly of 25S:18S ratios from 2:1 to 3:1. This result is consistent with the role of the gene product of BMS1 in ribosome biogenesis.ConclusionThis work demonstrates the power of a rational approach to recombinant protein production by using the results of transcriptome analysis to engineer improved strains, thereby revealing the underlying biological events involved.

Collaboration


Dive into the Roslyn M. Bill's collaboration.

Top Co-Authors

Avatar

Matthew T. Conner

Sheffield Hallam University

View shared research outputs
Top Co-Authors

Avatar

Stefan Hohmann

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Karlgren

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Leigh Revers

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Philip Kitchen

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Rydström

University of Gothenburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge