Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ross Johnston is active.

Publication


Featured researches published by Ross Johnston.


Estuaries and Coasts | 2007

The Effect of Impoundments on the Structure and Function of Fish Fauna in a Highly Regulated Dry Tropics Estuary

Marcus Sheaves; Ross Johnston; Brett W. Molony; Greg Shepard

Ross River flows through the Townsville/Thuringowa urban area in north Queensland, Australia, which has a dry tropical climate characterized by high inter-annual rainfall variation. Unregulated rivers in the Ross catchment basin deliver freshwater flows to their estuaries during both strong and weak wet seasons. The construction of a series of dams and weirs on Ross River means the wet-dry cycle is accentuated, leading to constant marine salinities throughout the estuary becoming the norm, with a lack of freshwater flow for five or more years at a time. The fish fauna of Ross River estuary was sampled in the post wet and dry seasons during an extremely dry climatic period (1994) and extremely wet climatic period (2000) using a small mesh (6 mm) pocket seine net. The fish fauna seemed to reflect seasonal differences. Catches from 1994 (dry period) were comprised entirely of 88 marine and euryhaline species, while the 69 species captured in 2000 (wet period) included 13 freshwater species. However, the freshwater species in the upper estuary were individuals washed over the weir, rather than part of a functional faunal gradient. During 1994 faunal composition was related more to site identity than to the position of the site along an upstream gradient. In contrast, during 2000 there were clear upstream faunal gradients with compositions in upstream sites heavily influenced by freshwater species, and marine and euryhaline species dominating downstream sites. Patterns of species dominance also varied between years. In contrast, trophic composition showed consistent shifts in both years, from high proportions of herbivores, carnivores and benthoplanktivores in May towards high proportions of benthivores in August. Not only do faunal composition, seasonal faunal change and ecological connectivity seem to be impaired, but ecological processes in the estuary that rely on seasonal freshwater flows are likely to be unable to operate normally in most years. The extreme seasonality in Ross River may serve as a model for many of the changes that will be experienced in dry tropics estuaries under global climate change scenarios of more extreme seasonality.


Marine and Freshwater Research | 2007

Fish fauna of dry tropical and subtropical estuarine floodplain wetlands

Marcus Sheaves; Ross Johnston; Kátya G. Abrantes

Estuarine floodplain wetland pools occur adjacent to marine coasts and estuaries throughout the world. In Australia’s dry tropics and sub-tropics, low and irregular rainfall means estuarine wetland pools are isolated for much of the time, resulting in varied within-pool conditions, with chemistry ranging from fresh to hypersaline, depending on the balance between freshwater and marine inputs and the time between connections. Varied physical conditions and irregular connectivity provide the potential for substantial faunal difference among pools. The present study compares the compositions and structures of the fish fauna of a broad cross section of estuarine wetland pools adjacent to the estuary of the Fitzroy River, one of the largest rivers in Australia’s dry tropical/subtropical zone. Ten pools were sampled between February 2004 and May 2005. The total species richness was low, with the 6123 fish recorded over the study, comprising only 44 species. This low species richness was reflected at the individual pool level, with a maximum total richness of 25 species in a single pool. Different pools had faunas that differed as a function of the proportion of the community comprised of marine spawned, compared with freshwater spawned, species. This was a reflection of the extent of connectivity to freshwater and marine systems, which determined both the physical nature of pools and the sources of faunal supply. Despite faunal differences among pools, at a functional level pool fish faunas were dominated by detritivores, regardless of pool type, size, season or connectedness.


Wetlands Ecology and Management | 2012

Fish assemblages as indicators of estuary ecosystem health

Marcus Sheaves; Ross Johnston; Rod Martin Connolly

Understanding and managing increasing threat from diverse anthropogenic pressures on estuaries requires impact assessment and monitoring indices that provide accurate quantification of change and are readily communicable. Although indices based on nekton assemblage structure have obvious appeal to managers, the imperative to produce the most accurate measures possible has seen a move away from simple composite measures (such as diversity indices) towards complex multivariate approaches. However, complex methods often provide a poor basis for reporting because they can be difficult to report in terms that are meaningful to the end user. Effective indices should be simple to construct and communicate, relate directly to definable biological attributes, fall within predictable ranges for unimpacted systems and show demonstrable responses to known impacts. We use published nekton data for 30 natural and two artificial estuaries to develop a set of nekton assemblage-based summary measures that fit these criteria. We evaluated a suite of simple parallel measures based on both catch per unit effort (CPUE) and probability of encounter (PoE). Parallel measures provide complementary information thus a more robust assessments of change. Three measures fell within consistent bounds as long as comparisons were confined to the same time of year to remove the influence of seasonal variability, and were efficient at differentiating degraded from unimpacted estuaries. Because the successful approaches rely on PoE rather than CPUE they have considerable tactical advantages in that they are less destructive, allow for the collection of many more samples per unit time, and treat schooling and non-schooling species equivalently.


PLOS ONE | 2012

Fish Utilisation of Wetland Nurseries with Complex Hydrological Connectivity

Benjamin Davis; Ross Johnston; Ronnie Baker; Marcus Sheaves

The physical and faunal characteristics of coastal wetlands are driven by dynamics of hydrological connectivity to adjacent habitats. Wetlands on estuary floodplains are particularly dynamic, driven by a complex interplay of tidal marine connections and seasonal freshwater flooding, often with unknown consequences for fish using these habitats. To understand the patterns and subsequent processes driving fish assemblage structure in such wetlands, we examined the nature and diversity of temporal utilisation patterns at a species or genus level over three annual cycles in a tropical Australian estuarine wetland system. Four general patterns of utilisation were apparent based on CPUE and size-structure dynamics: (i) classic nursery utlisation (use by recently settled recruits for their first year) (ii) interrupted peristence (iii) delayed recruitment (iv) facultative wetland residence. Despite the small self-recruiting ‘facultative wetland resident’ group, wetland occupancy seems largely driven by connectivity to the subtidal estuary channel. Variable connection regimes (i.e. frequency and timing of connections) within and between different wetland units (e.g. individual pools, lagoons, swamps) will therefore interact with the diversity of species recruitment schedules to generate variable wetland assemblages in time and space. In addition, the assemblage structure is heavily modified by freshwater flow, through simultaneously curtailing persistence of the ’interrupted persistence’ group, establishing connectivity for freshwater spawned members of both the ‘facultative wetland resident’ and ‘delayed recruitment group’, and apparently mediating use of intermediate nursery habitats for marine-spawned members of the ‘delayed recruitment’ group. The diversity of utilisation pattern and the complexity of associated drivers means assemblage compositions, and therefore ecosystem functioning, is likely to vary among years depending on variations in hydrological connectivity. Consequently, there is a need to incorporate this diversity into understandings of habitat function, conservation and management.


Wetlands Ecology and Management | 2007

Nursery ground value of an endangered wetland to juvenile shrimps

Marcus Sheaves; Kátya G. Abrantes; Ross Johnston

Although urban development impacts wetlands around the world, until now there have been no studies of its effects on coastal wetlands in tropical regions of developed countries such as Australia. In fact the ecological value of such wetlands is poorly understood. This study provides an initial step in evaluating the ecological value of urbanised, tropical coastal wetlands by determining (a) the extent to which a remnant wetland, in a highly urbanised estuary in northern Australia, is used by juvenile commercial penaeid shrimps, and (b) the extent to which the shrimps rely on food chains based on wetland plants versus marine based food chains. Juvenile penaeids were abundant in the 11 wetland pools sampled. Catches included 5 commercial penaeids with two species, Fenneropenaeus merguiensis and Metapenaeus bennetae, comprising half the catch. Densities in the wetland pools were usually substantially higher than in adjacent estuarine habitats. Stable isotope analysis indicated that much of the nutrition of juvenile shrimps was supplied by marine primary producers (phytoplankton, epiphytic and epilithic algae, microphytobenthos, green filamentous algae) however the locally abundant saltmarsh grass Sporobolus virginicus was also a major contributor. In contrast, there was little indication of nutritional support from mangrove carbon. The lack of importance of mangrove carbon is surprising because the catches of F. merguiensis are often closely linked to the area or extent of mangroves, suggesting that aspects of mangrove systems other than the supply of mangrove carbon may determine the distribution of juvenile F. merguiensis.


Estuaries and Coasts | 2013

Nursery Function Drives Temporal Patterns in Fish Assemblage Structure in Four Tropical Estuaries

Marcus Sheaves; Ross Johnston; Ashlee Johnson; Ronald Baker; Rod Martin Connolly

Despite estuary-to-estuary differences in assemblage composition, fish faunas of tropical Indo-Pacific estuaries show parallel patterns of temporal change, suggesting a common set of ecological drivers. One potentially important driver is the interaction of different patterns of occupancy by functional groups that display different life-history patterns. However, most studies that have considered temporal change lack the detail needed to understand life-history utilisation. Most have focussed on changes in catch per unit effort (CPUE) or probability of encounter, with only one study going further and investigating changes in size structure and then only for a single estuary. One of the reasons for this lack of detail is the large volume of work needed to collect comprehensive data on size structures of species rich assemblages across multiple estuary systems over time. To overcome the logistical limitations on data collection, we used joint patterns of change in CPUE and mean biomass per fish (BPF) as proxies for changes in size structure. We investigated how different life-history strategies contributed to overall temporal patterns of assemblage change across four tropical Indo-Pacific estuaries. The three life-history strategies displayed characteristically different patterns in CPUE and BPF and the relationships between CPUE and BPF that reflect differences in the way that the three groups use estuaries. These different patterns interacted to produce complex assemblage patterns that are likely to be sensitive to location-specific differences in the mix of species from each group, providing at least part of the explanation for the site-specific fish assemblage structures that are characteristic of tropical estuarine fish fauna.


Neurosurgery | 2014

Intraobserver and interobserver agreement in visual inspection for xanthochromia: implications for subarachnoid hemorrhage diagnosis, computed tomography validation studies, and the Walton rule.

Laurence A. G. Marshman; Ryan Duell; Donna Rudd; Ross Johnston; Cassandra Faris

BACKGROUND Visual inspection for xanthochromia is used to diagnose subarachnoid hemorrhage (SAH), to validate computed tomography subarachnoid hemorrhage diagnosis and was used to determine the Walton rule. No study has assessed the reliability of xanthochromia. OBJECTIVE To determine intraobserver and interobserver xanthochromia agreement. METHODS Mock cerebrospinal fluid samples contained increasing concentrations of human oxyhemoglobin, bilirubin, and albumin. Non-color-blind observers randomly assessed samples against a white background twice under significantly differing illumination. Specimens were recorded as red, orange, yellow, or clear. RESULTS Results were obtained for 26 observers (11 male, 15 female observers). We found that 19.2% of samples were misclassified: red, 11.7%; orange, 28.5%; yellow, 29.6%; and clear, 22.1% (χ = 213.2; P < .001). Of the yellow misclassifications, 88% were misclassified as clear. Female observers correctly classified samples significantly more frequently than male observers (P = .03). Intraobserver agreement differed significantly from expected for both male (χ = 105.6; P < .001) and female (χ = 99.9; P < .001) observers regardless of illumination. Interobserver agreement was poor regardless of sex (χ for male observers = 176.96, P < .001; χ for female observers = 182.69, P < .001) or illumination (χ for bright = 125.64, P < .001; χ for dark = 148.48, P < .001). Overall, there was 75% agreement in 46% of the tests and 90% agreement in only 36% of the tests. CONCLUSION This simple laboratory study would be expected to maximize agreement relative to clinical practice. Although non-color-blind female observers significantly outperformed non-color-blind male observers, both intraobserver agreement and interobserver agreement for xanthochromia were prohibitively poor regardless of sex or illumination. Yellow was most frequently misclassified, 88% as clear (ie, true positives were commuted to false negatives). Xanthochromia is therefore highly unreliable for subarachnoid hemorrhage diagnosis and computed tomography validation. The Walton rule requires urgent clinical revalidation.


Archive | 2014

Deluge Inlet, a Pristine Small Tropical Estuary in North-Eastern Australia

Marcus Sheaves; Kátya G. Abrantes; Ross Johnston

Deluge Inlet is a small, tide-dominated estuary on Australia’s north-east tropical coast, located in the central part of the Hinchinbrook Island National Park, Australia’s largest island National Park. It is situated in Australia’s humid tropical zone, and experiences an intense summer wet season and regular impacts of tropical cyclones. Protection by National Parks, World Heritage and Wild Rivers legislation means it remains in near pristine condition. Deluge Inlet sports substantial biodiversity in the form of extensive mangrove forests, seagrass beds, and complex marine mammal, reptile, fish and invertebrate assemblages, all supported by a mosaic of highly interconnected habitat types. The mix of habitats and rich biodiversity makes Deluge Inlet an important nursery for many species, and supports complex food webs. Current threats are from increasing fishing and boating pressure, and effective governance will be needed to ensure Deluge Inlet remains in near-pristine condition into the future.


Marine Ecology Progress Series | 2006

Marine nurseries and effective juvenile habitats: an alternative view

Marcus Sheaves; Ronnie Baker; Ross Johnston


Marine Ecology Progress Series | 2008

Influence of marine and freshwater connectivity on the dynamics of subtropical estuarine wetland fish metapopulations

Marcus Sheaves; Ross Johnston

Collaboration


Dive into the Ross Johnston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge