Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ross W. Whetten is active.

Publication


Featured researches published by Ross W. Whetten.


Global Change Biology | 2013

Potential for evolutionary responses to climate change – evidence from tree populations

Florian J. Alberto; Sally N. Aitken; Ricardo Alía; Santiago C. González-Martínez; Heikki Hänninen; Antoine Kremer; François Lefèvre; Thomas Lenormand; Sam Yeaman; Ross W. Whetten; Outi Savolainen

Evolutionary responses are required for tree populations to be able to track climate change. Results of 250 years of common garden experiments show that most forest trees have evolved local adaptation, as evidenced by the adaptive differentiation of populations in quantitative traits, reflecting environmental conditions of population origins. On the basis of the patterns of quantitative variation for 19 adaptation-related traits studied in 59 tree species (mostly temperate and boreal species from the Northern hemisphere), we found that genetic differentiation between populations and clinal variation along environmental gradients were very common (respectively, 90% and 78% of cases). Thus, responding to climate change will likely require that the quantitative traits of populations again match their environments. We examine what kind of information is needed for evaluating the potential to respond, and what information is already available. We review the genetic models related to selection responses, and what is known currently about the genetic basis of the traits. We address special problems to be found at the range margins, and highlight the need for more modeling to understand specific issues at southern and northern margins. We need new common garden experiments for less known species. For extensively studied species, new experiments are needed outside the current ranges. Improving genomic information will allow better prediction of responses. Competitive and other interactions within species and interactions between species deserve more consideration. Despite the long generation times, the strong background in quantitative genetics and growing genomic resources make forest trees useful species for climate change research. The greatest adaptive response is expected when populations are large, have high genetic variability, selection is strong, and there is ecological opportunity for establishment of better adapted genotypes.


Science | 1993

A laccase associated with lignification in loblolly pine xylem

Wuli Bao; David M. O'Malley; Ross W. Whetten; Ronald R. Sederoff

Peroxidase has been thought to be the only enzyme that oxidizes monolignol precursors to initiate lignin formation in plants. A laccase was purified from cell walls of differentiating xylem of loblolly pine and shown to coincide in time and place with lignin formation and to oxidize monolignols to dehydrogenation products in vitro. These results suggest that laccase participates in lignin biosynthesis and therefore could be an important target for genetic engineering to modify wood properties or to improve the digestibility of forage crops.


Genome Biology | 2014

Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies

David B. Neale; Jill L. Wegrzyn; Kristian A. Stevens; Aleksey V. Zimin; Daniela Puiu; Marc W. Crepeau; Charis Cardeno; Maxim Koriabine; Ann Holtz-Morris; John D. Liechty; Pedro J. Martínez-García; Hans A. Vasquez-Gross; Brian Y. Lin; Jacob J. Zieve; William M. Dougherty; Sara Fuentes-Soriano; Le Shin Wu; Don Gilbert; Guillaume Marçais; Michael Roberts; Carson Holt; Mark Yandell; John M. Davis; Katherine E. Smith; Jeffrey F. D. Dean; W. Walter Lorenz; Ross W. Whetten; Ronald R. Sederoff; Nicholas Wheeler; Patrick E. McGuire

BackgroundThe size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination.ResultsWe develop a novel strategy to sequence the genome of loblolly pine that combines unique aspects of pine reproductive biology and genome assembly methodology. We use a whole genome shotgun approach relying primarily on next generation sequence generated from a single haploid seed megagametophyte from a loblolly pine tree, 20-1010, that has been used in industrial forest tree breeding. The resulting sequence and assembly was used to generate a draft genome spanning 23.2 Gbp and containing 20.1 Gbp with an N50 scaffold size of 66.9 kbp, making it a significant improvement over available conifer genomes. The long scaffold lengths allow the annotation of 50,172 gene models with intron lengths averaging over 2.7 kbp and sometimes exceeding 100 kbp in length. Analysis of orthologous gene sets identifies gene families that may be unique to conifers. We further characterize and expand the existing repeat library based on the de novo analysis of the repetitive content, estimated to encompass 82% of the genome.ConclusionsIn addition to its value as a resource for researchers and breeders, the loblolly pine genome sequence and assembly reported here demonstrates a novel approach to sequencing the large and complex genomes of this important group of plants that can now be widely applied.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana

Matias Kirst; Arthur Johnson; Christie Baucom; Erin Ulrich; Kristy Hubbard; Rod Staggs; Charles Paule; Ernest F. Retzel; Ross W. Whetten; Ronald R. Sederoff

Pinus taeda L. (loblolly pine) and Arabidopsis thaliana differ greatly in form, ecological niche, evolutionary history, and genome size. Arabidopsis is a small, herbaceous, annual dicotyledon, whereas pines are large, long-lived, coniferous forest trees. Such diverse plants might be expected to differ in a large number of functional genes. We have obtained and analyzed 59,797 expressed sequence tags (ESTs) from wood-forming tissues of loblolly pine and compared them to the gene sequences inferred from the complete sequence of the Arabidopsis genome. Approximately 50% of pine ESTs have no apparent homologs in Arabidopsis or any other angiosperm in public databases. When evaluated by using contigs containing long, high-quality sequences, we find a higher level of apparent homology between the inferred genes of these two species. For those contigs 1,100 bp or longer, ≈90% have an apparent Arabidopsis homolog (E value < 10-10). Pines and Arabidopsis last shared a common ancestor ≈300 million years ago. Few genes would be expected to retain high sequence similarity for this time if they did not have essential functions. These observations suggest substantial conservation of gene sequence in seed plants.


Plant Molecular Biology | 1999

High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda)

Allan Richard Wenck; Michelle Quinn; Ross W. Whetten; Gerald S. Pullman; Ronald R. Sederoff

Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large- scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene β-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co- cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.


Plant Molecular Biology | 2003

Characterisation of PtMYB1, an R2R3-MYB from pine xylem

Astrid Patzlaff; Lisa J. Newman; Christian Dubos; Ross W. Whetten; Caroline Smith; Stephanie McInnis; Michael W. Bevan; Ronald R. Sederoff; Malcolm M. Campbell

A cDNA encoding a member of the R2R3-MYB family of transcription factors was cloned from a library constructed from differentiating Pinus taeda (loblolly pine) xylem RNA. This MYB family member, Pinus taeda MYB1 (PtMYB1), was most abundantly expressed in differentiating xylem, as assessed by both ribonuclease protection assays, and by northern blot analysis with poly(A)-enriched RNA. Similar to other plant R2R3-MYB family members, recombinant PtMYB1 protein was able to bind to AC elements in electrophoretic mobility shift assays (EMSAs). AC elements are DNA motifs rich in adenosine and cytosine that have been implicated in the xylem-localised regulation of genes encoding lignin biosynthetic enzymes. PtMYB1 not only bound to AC elements, but was also able to induce AC-element-dependent shifts in the electrophoretic mobility of a plant promoter that contains three AC elements, the minimal PHENYLALANINE AMMONIA-LYASE 2 (PAL2) promoter from Phaseolus vulgaris. Transcriptional activation assays conducted using yeast showed that PtMYB1 also activated transcription, and that it did so in an AC-element-dependent fashion. PtMYB1 also activated transcription from the minimal PAL2 promoter in plant cells in an AC-element-dependent fashion, as revealed by transient transcriptional activation assays with microprojectile-bombarded tobacco NT-1 cells. Taken together, these finding are consistent with the hypothesis that PtMYB1 may regulate transcription from cis-acting AC elements in pine xylem.


Plant Physiology | 1995

4-Coumarate:Coenzyme A Ligase from Loblolly Pine Xylem (Isolation, Characterization, and Complementary DNA Cloning)

Kui Shin Voo; Ross W. Whetten; David M. O'Malley; Ronald R. Sederoff

4-Coumarate:CoA ligase (4CL, EC 6.2.1.12) was purified from differentiating xylem of loblolly pine (Pinus taeda L.). The pine enzyme had an apparent molecular mass of 64 kD and was similar in size and kinetic properties to 4CL isolated from Norway spruce. The pine enzyme used 4-coumaric acid, caffeic acid, ferulic acid, and cinnamic acid as substrates but had no detectable activity using sinapic acid. 4CL was inhibited by naringenin and coniferin, products of phenylpropanoid metabolism. Although the lignin composition in compression wood is higher in p-hydroxyphenyl units than lignin from normal wood, there was no evidence for a different form of 4CL enzyme in differentiating xylem that was forming compression wood. cDNA clones for 4CL were obtained from a xylem expression library. The cDNA sequences matched pine xylem 4CL protein sequences and showed 60 to 66% DNA sequence identity with 4CL sequences from herbaceous angiosperms. There were two classes of cDNA obtained from pine xylem, and the genetic analysis showed that they were products of a single gene.


Molecular Genetics and Genomics | 1995

Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine: single gene inheritance, molecular characterization and evolution

John J. MacKay; Weiwei Liu; Ross W. Whetten; Ronald R. Sederoff; David M. O'Malley

The gene encoding the monolignol biosynthetic enzyme cinnamyl alcohol dehydrogenase (CAD, E.C. 1.1.1.195) can be expressed in response to different developmental and environmental cues. Control of Cad gene expression could involve either differential regulation of more than one Cad gene or, alternatively combinatorial regulation of a single Cad gene. In loblolly pine (Pinus taeda L.), we found several electrophoretic variants (allozymes) of CAD and a high level of heterozygosity (he=0.46). Analysis of inheritance patterns of pine CAD allozymes gave segregation ratios that were consistent with Mendelian expectations for a single functional gene. The identity of the full-length Cad cDNA sequence was confirmed by alignment with peptide sequences obtained from purified active enzyme and by extensive similarity to Cad sequences from other species. Southern blot analysis of genomic DNA using the Cad cDNA as a hybridization probe gave simple patterns, consistent with our interpretation that pine Cad is a single-copy gene. Phylogenetic analysis and evolution rate estimates showed that Cad sequences are diverging less rapidly in the gymnosperms than in the angiosperms. The Cad mRNA was present in both lignifying tissues and a non lignifying tissue (the megagametophyte) of pine. The presence of a single gene suggests that different regulatory mechanisms for a single Cad gene, rather than differential regulation of several genes, can account for its expression in response to different cues.


Planta | 2001

Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens

Wei Tang; Ronald R. Sederoff; Ross W. Whetten

Abstract. Embryos of 24 open-pollinated families of loblolly pine (Pinus teade L.) were used as explants to conduct in vitro regeneration. Then, Agrobacterium tumefaciens strain GV3101 harboring the plasmid pPCV6NFHygGUSINT was used to transform mature zygotic embryos of seven families of loblolly pine. The frequency of transformation varied among families infected with A. tumefaciens. The highest frequency (100%) of transient β-glucuronidase (GUS)-expressing embryos was obtained from family 11-1029 with over 300 blue spots per embryo. Expression of the GUS reporter gene was observed in cotyledons, hypocotyls, and radicles of co-cultivated mature zygotic embryos, as well as in callus and shoots derived from co-cultivated mature zygotic embryos. Ninety transgenic plants were regenerated from hygromycin-resistant callus derived from families WO3, 8-1082 and 11-1029, and 19 transgenic plantlets were established in soil. The presence of the GUS gene in the plant genome was confirmed by polymerase chain reaction, Southern blot, and plant DNA/T-DNA junction analysis. These results suggest that an efficient A. tumefaciens-mediated transformation protocol for stable integration of foreign genes into loblolly pine has been developed and that this transformation system could be useful for future studies on transferring economically important genes to loblolly pine.


Journal of Plant Research | 2001

Molecular Cloning and Expression of Eight Laccase cDNAs in Loblolly Pine (Pinus taeda)

Yasushi Sato; Bao Wuli; Ronald R. Sederoff; Ross W. Whetten

et al. 1998) and other three (Lac 6–8) were isolated using a probe from a tobacco blue copper oxidase. Analysis of the cDNAs revealed that the proteins predicted had N-terminal signal sequences, 8–21 glycosylation sites, and four copper binding sites. The putative mature laccases range between 59.2 and 61.7 kD. The predicted isoelectric points vary between 7.3 and 9.9. Phylogenetic analysis shows these laccase cDNAs form three clusters in the cationic plant laccase group. Northern analysis indicated that all eight of the laccase transcripts are most abundant in differentiating xylem of the six tissues and organs tested. The Lac 1 transcript is also detectable in immature pollen cones, and the Lac 7 transcript is detectable in several organs tested. The predominance of transcript abundance in differentiating xylem suggests that laccases play an important role in pine xylem development, consistent with previous hypotheses that laccases are involved in lignin synthesis in differentiating xylem.

Collaboration


Dive into the Ross W. Whetten's collaboration.

Top Co-Authors

Avatar

Ronald R. Sederoff

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Fikret Isik

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Steven E. McKeand

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

David M. O'Malley

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

David B. Neale

University of California

View shared research outputs
Top Co-Authors

Avatar

Jill L. Wegrzyn

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfredo E. Farjat

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Barry Goldfarb

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Jaime Zapata-Valenzuela

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge