Roy Kennedy
University of Worcester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roy Kennedy.
Applied and Environmental Microbiology | 2000
Roy Kennedy; Alison Wakeham; K. G. Byrne; U. M. Meyer; F. M. Dewey
ABSTRACT We describe a new microtiter immunospore trapping device (MTIST device) that uses a suction system to directly trap air particulates by impaction in microtiter wells. This device can be used for rapid detection and immunoquantification of ascospores ofMycosphaerella brassicicola and conidia of Botrytis cinerea by an enzyme-linked immunosorbent assay (ELISA) under controlled environmental conditions. For ascospores ofM. brassicicola correlation coefficients (r2) of 0.943 and 0.9514 were observed for the number of MTIST device-impacted ascospores per microtiter well and the absorbance values determined by ELISA, respectively. These values were not affected when a mixed fungal spore population was used. There was a relationship between the number of MTIST device-trapped ascospores of M. brassicicola per liter of air sampled and the amount of disease expressed on exposed plants ofBrassica oleracea (Brussels sprouts). Similarly, when the MTIST device was used to trap conidia of B. cinerea, a correlation coefficient of 0.8797 was obtained for the absorbance values generated by the ELISA and the observed number of conidia per microtiter well. The relative collection efficiency of the MTIST device in controlled plant growth chambers with limited airflow was 1.7 times greater than the relative collection efficiency of a Burkard 7-day volumetric spore trap for collection of M. brassicicola ascospores. The MTIST device can be used to rapidly differentiate, determine, and accurately quantify target organisms in a microflora. The MTIST device is a portable, robust, inexpensive system that can be used to perform multiple tests in a single sampling period, and it should be useful for monitoring airborne particulates and microorganisms in a range of environments.
Allergy | 2013
Carmen Galán; Célia M. Antunes; Rui Brandao; C. Torres; Herminia García-Mozo; Elsa Caeiro; R. Ferro; Marje Prank; Mikhail Sofiev; Roberto Albertini; Uwe Berger; Lorenzo Cecchi; Sevcan Celenk; Lukasz Grewling; Bogdan Jackowiak; Siegfried Jäger; Roy Kennedy; Auli Rantio-Lehtimäki; Gerald Reese; I. Sauliene; Matt Smith; Michel Thibaudon; Bernhard Weber; I. Weichenmeier; Gudrun Pusch; Jeroen Buters
Pollen is routinely monitored, but it is unknown whether pollen counts represent allergen exposure. We therefore simultaneously determined olive pollen and Ole e 1 in ambient air in Córdoba, Spain, and Évora, Portugal, using Hirst‐type traps for pollen and high‐volume cascade impactors for allergen.
The Journal of Allergy and Clinical Immunology | 2015
Jeroen Buters; Marje Prank; Mikhail Sofiev; Gudrun Pusch; Roberto Albertini; Isabella Annesi-Maesano; Célia M. Antunes; Heidrun Behrendt; Uwe Berger; Rui Brandao; Sevcan Celenk; Carmen Galán; Łukasz Grewling; Bogdan Jackowiak; Roy Kennedy; Auli Rantio-Lehtimäki; Gerald Reese; I. Sauliene; Matt Smith; Michel Thibaudon; Bernhard Weber; Lorenzo Cecchi
BACKGROUND Allergies to grass pollen are the number one cause of outdoor hay fever. The human immune system reacts with symptoms to allergen from pollen. OBJECTIVE We investigated the natural variability in release of the major group 5 allergen from grass pollen across Europe. METHODS Airborne pollen and allergens were simultaneously collected daily with a volumetric spore trap and a high-volume cascade impactor at 10 sites across Europe for 3 consecutive years. Group 5 allergen levels were determined with a Phl p 5-specific ELISA in 2 fractions of ambient air: particulate matter of greater than 10 μm in diameter and particulate matter greater than 2.5 μm and less than 10 μm in diameter. Mediator release by ambient air was determined in FcεRI-humanized basophils. The origin of pollen was modeled and condensed to pollen potency maps. RESULTS On average, grass pollen released 2.3 pg of Phl p 5 per pollen. Allergen release per pollen (potency) varied substantially, ranging from less than 1 to 9 pg of Phl p 5 per pollen (5% to 95% percentile). The main variation was locally day to day. Average potency maps across Europe varied between years. Mediator release from basophilic granulocytes correlated better with allergen levels per cubic meter (r(2) = 0.80, P < .001) than with pollen grains per cubic meter (r(2) = 0.61, P < .001). In addition, pollen released different amounts of allergen in the non-pollen-bearing fraction of ambient air, depending on humidity. CONCLUSION Across Europe, the same amount of pollen released substantially different amounts of group 5 grass pollen allergen. This variation in allergen release is in addition to variations in pollen counts. Molecular aerobiology (ie, determining allergen in ambient air) might be a valuable addition to pollen counting.
International Journal of Biometeorology | 2015
Magdalena Sadyś; Agnieszka Strzelczak; Agnieszka Grinn-Gofroń; Roy Kennedy
An aerobiological survey was conducted through five consecutive years (2006–2010) at Worcester (England). The concentration of 20 allergenic fungal spore types was measured using a 7-day volumetric spore trap. The relationship between investigated fungal spore genera and selected meteorological parameters (maximum, minimum, mean and dew point temperatures, rainfall, relative humidity, air pressure, wind direction) was examined using an ordination method (redundancy analysis) to determine which environmental factors favoured their most abundance in the air and whether it would be possible to detect similarities between different genera in their distribution pattern. Redundancy analysis provided additional information about the biology of the studied fungi through the results of the Spearman’s rank correlation. Application of the variance inflation factor in canonical correspondence analysis indicated which explanatory variables were auto-correlated and needed to be excluded from further analyses. Obtained information will be consequently implemented in the selection of factors that will be a foundation for forecasting models for allergenic fungal spores in the future.
Plant Disease | 2004
Tijs Gilles; Kath Phelps; John P. Clarkson; Roy Kennedy
The effects of temperature and relative humidity on Peronospora destructor sporulation on onion (Allium cepa) leaves were studied under controlled environmental conditions. Sporangia were produced most rapidly at 8 to 12°C after 5 h of high humidity during dark periods. The greatest number of sporangia was produced at 100% relative humidity (RH), and sporulation decreased to almost nil when humidity decreased to 93% RH. A model, named MILIONCAST (an acronym for MILdew on onION foreCAST), was developed based on the data from these controlled environment studies to predict the rate of sporulation in relation to temperature and relative humidity. The accuracy of prediction of sporulation was evaluated by comparing predictions with observations of sporulation on infected plants in pots outdoors. The accuracy of MILIONCAST was compared with the accuracy of existing models based on DOWNCAST. MILIONCAST gave more correct predictions of sporulation than the DOWNCAST models and a random model. All models based on DOWNCAST were more accurate than the random model when compared on the basis of all predictions (including positive and negative predictions), but they gave fewer correct predictions of sporulation than the random model. De Vissers DOWNCAST and ONIMIL improved their accuracy of prediction of sporulation events when the threshold humidity for sporulation was reduced to 92% RH. The temporal pattern of predicted sporulation by MILIONCAST generally corresponded well to the pattern of sporulation observed on the outdoor potted plants at Wellesbourne, UK.
Aerobiologia | 2014
David J. O’Connor; Magdalena Sadyś; Carsten Ambelas Skjøth; David A. Healy; Roy Kennedy; John R. Sodeau
This study represents the first international intercomparison of fungal spore observations since 1990, focusing on atmospheric concentrations of Alternaria, Cladosporium, Ganoderma and Didymella spores. The campaigns were performed at sites located in Cork (Ireland) and Worcester (England) during summer 2010. Observations were made using Hirst-type volumetric spore traps and corresponding optical identification at the genus level by microscope. The measurements at both sites (including meteorological parameters) were compared and contrasted. The relationships between the fungal spore concentrations with selected meteorological parameters were investigated using statistical methods and multivariate regression trees (MRT). The results showed high correlations between the two sites with respect to daily variations. Statistically significant higher spore concentrations for Alternaria, Cladosporium and Ganoderma were monitored at the Worcester site. This result was most likely due to the differences in precipitation and local fungal spore sources at the two sites. Alternaria and Cladosporium reached their maxima a month earlier in Cork than in Worcester, and Didymella with Ganoderma peaked simultaneously with similar diurnal trends found for all the investigated spore types. MRT analysis helped to determine threshold values of the meteorological parameters that exerted most influence on the presence of spores: they were found to vary at the two sites. Our results suggest that the aeromycological profile is quite uniform over the British Isles, but a description of bioaerosols with respect to overall load and daily concentration can be quite diverse although the geographical difference between sites is relatively small. These variations in the concentrations therefore need to be explored at the national level.
International Journal of Biometeorology | 2014
Robert Peel; Roy Kennedy; Matt Smith; Ole Hertel
In epidemiological studies, outdoor exposure to pollen is typically estimated using rooftop monitoring station data, whilst exposure overwhelmingly occurs at street level. In this study the relationship between street level and roof level grass pollen concentrations was investigated for city centre street canyon environments in Aarhus, Denmark, and London, UK, during the grass pollen seasons of 2010 and 2011 respectively. For the period mid-day to late evening, street level concentrations in both cities tended to be lower than roof-level concentrations, though this difference was found to be statistically significant only in London. The ratio of street/roof level concentrations was compared with temperature, relative humidity, wind speed and direction, and solar radiation. Results indicated that the concentration ratio responds to wind direction with respect to relative canyon orientation and local source distribution. In the London study, an increase in relative humidity was linked to a significant decrease in street/roof level concentration ratio, and a possible causative mechanism involving moisture mediated pollen grain buoyancy is proposed. Relationships with the other weather variables were not found to be significant in either location. These results suggest a tendency for monitoring station data to overestimate exposure in the canyon environment.
Phytopathology | 2003
Tijs Gilles; Roy Kennedy
ABSTRACT Controlled environment experiments were conducted to study the effects of inoculum density, temperature, and their interaction on germination of Puccinia allii urediniospores and infection of leek leaves. Percent germination of P. allii urediniospores and percent branching of germ tubes increased with 3 density of urediniospores and approached a plateau for densities above approximately 20 spores cm(-2) of leaf area. Percent germination was highest at 12 to 21 degrees C, a wide-range temperature optimum. Branching occurred at temperatures ranging from 5 to 25 degrees C, but there were few germ tubes branching at 25 degrees C. P. allii successfully infected leek leaves at temperatures ranging from 7 to 22 degrees C. The number of pustules produced increased with urediniospore density on leek leaves. At low spore densities, pustule production was little affected by temperature; at higher spore densities, pustule production was greatest between 9 to 11 degrees C, and numbers of pustules decreased greatly with temperature increasing above this optimum. Latent period was affected by temperature, with latent period being shortet between 19 and 22 degrees C, and latent period increasing when temperature decreased. Latent periods became approximately 1.8 days shorter for every 10-fold increase in spore density. The rate of pustule production increased with increasing spore density on leaves and was greatest between 11 to 14 degrees C. Computer simulation of leek rust progress based on the found relationships suggested that at optimal temperatures the development of leek rust epidemics may be little affected by initial spore density and density caused by each pustule, but that at sub- and supra-optimal temperatures the development is greatly affected by these variables.
Ophthalmology | 2014
Paramdeep Bilkhu; James S. Wolffsohn; Shehzad A. Naroo; Louise Robertson; Roy Kennedy
OBJECTIVE To investigate whether artificial tears and cold compress alone or in combination provide a treatment benefit and whether they were as effective as or could enhance topical antiallergic medication. DESIGN Randomized, masked clinical trial. PARTICIPANTS Eighteen subjects (mean age, 29.5±11.0 years) allergic to grass pollen. INTERVENTION Controlled exposure to grass pollen using an environmental chamber to stimulate an ocular allergic reaction followed by application of artificial tears (ATs), 5 minutes of cold compress (CC), ATs combined with CC, or no treatment applied at each separate visit in random order. A subset of 11 subjects also had epinastine hydrochloride (EH) applied alone and combined with CC in random order or instillation of a volume-matched saline control. MAIN OUTCOME MEASURES Bulbar conjunctival hyperemia, ocular surface temperature, and ocular symptoms repeated before and every 10 minutes after treatment for 1 hour. RESULTS Bulbar conjunctival hyperemia and ocular symptoms decreased and temperature recovered to baseline faster with nonpharmaceutical treatments compared with no treatment (P <0.05). Artificial tears combined with CC reduced hyperemia more than other treatments (P <0.05). The treatment effect of EH was enhanced by combining it with a CC (P <0.001). Cold compress combined with ATs or EH lowered the antigen-raised ocular surface temperature to less than the pre-exposure baseline. Artificial tear instillation alone or CC combined with ATs or EH significantly reduced the temperature (P <0.05). Cold compress combined with ATs or EH had a similar cooling effect (P >0.05). At all measurement intervals, symptoms were reduced for both EH and EH combined with CC than CC or ATs alone or in combination (P <0.014). CONCLUSIONS After controlled exposure to grass pollen, CC and AT treatment showed a therapeutic effect on the signs and symptoms of allergic conjunctivitis. A CC enhanced the use of EH alone and was the only treatment to reduce symptoms to baseline within 1 hour of antigenic challenge. Signs of allergic conjunctivitis generally were reduced most by a combination of a CC in combination with ATs or EH.
Annals of Agricultural and Environmental Medicine | 2014
Robert Peel; Roy Kennedy; Matt Smith; Ole Hertel
INTRODUCTION In aerobiological studies it is often necessary to compare concentration data recorded with different models of sampling instrument. Sampler efficiency typically varies from device to device, and depends on the target aerosol and local atmospheric conditions. To account for these differences inter-sampler correction factors may be applied, however for many pollen samplers and pollen taxa such correction factors do not exist and cannot be derived from existing published work. MATERIALS AND METHODS In this study, the relative efficiencies of the Burkard 7-Day Recording Volumetric Spore Trap, the Sampling Technologies Rotorod Model 20, and the Burkard Personal Volumetric Air Sampler were evaluated for Urticaceae and Poaceae pollen under field conditions. The influence of wind speed and relative humidity on these efficiency relationships was also assessed. Data for the two pollen taxa were collected during 2010 and 2011-2012, respectively. RESULTS The three devices were found to record significantly different concentrations for both pollen taxa, with the exception of the 7-Day and Rotorod samplers for Poaceae pollen. Under the range of conditions present during the study, wind speed was found to only have a significant impact on inter-sampler relationships involving the vertically-orientated Burkard Personal sampler, while no interaction between relative efficiency and relative humidity was observed. CONCLUSIONS Data collected with the three models of sampler should only be compared once the appropriate correction has been made, with wind speed taken into account where appropriate.