Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roy N. Dsouza is active.

Publication


Featured researches published by Roy N. Dsouza.


Chemical Reviews | 2011

Fluorescent Dyes and Their Supramolecular Host/Guest Complexes with Macrocycles in Aqueous Solution

Roy N. Dsouza; Uwe Pischel; Werner M. Nau

Fluorescent Dyes and Their Supramolecular Host/Guest Complexes with Macrocycles in Aqueous Solution Roy N. Dsouza, Uwe Pischel,* and Werner M. Nau* School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany Centro de Investigaci on en Química Sostenible (CIQSO) and Departamento de Ingeniería Química, Química Física y Química Org anica, Universidad de Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain


Organic Letters | 2009

Cucurbituril-mediated supramolecular acid catalysis.

Cornelius Klöck; Roy N. Dsouza; Werner M. Nau

The rates of acid hydrolysis of N-benzoyl-cadaverine (1), mono-N-(tert-butoxy)carbonyl cadaverine (2), and benzaldoxime (3) with binding motifs for cucurbit[6]uril (1,2) and cucurbit[7]uril (1,3) were investigated in the absence and presence of these hosts. Significant rate enhancements (up to a factor of ca. 300 for the hydrolysis of 3) were observed. Competitive inhibition due to encapsulation of added cadaverine and the successful use of sub-stoichiometric amounts of macrocycle confirmed the function of cucurbiturils in promoting acid hydrolysis.


Chemistry: A European Journal | 2014

A simple assay for quality binders to cucurbiturils.

Julián Vázquez; Patricia Remón; Roy N. Dsouza; Alexandra I. Lazar; Jesús F. Arteaga; Werner M. Nau; Uwe Pischel

A new approach towards the rapid identification of quality binders to cucurbiturils--those that combine high affinity with high selectivity for a particular homologue--was developed. The assay exploits macrocycle-specific optical fingerprints (colorimetric or fluorimetric) of carefully selected indicators dyes. The screening of a guest library revealed known (e.g., adamantane derivatives) and new (e.g., terpenes) quality binders. The predictive power of the assay was underpinned by the modeling of the involved thermodynamic equilibria.


Journal of Chromatography A | 2013

Synthesis and performance of megaporous immobilized metal-ion affinity cryogels for recombinant protein capture and purification

Noor Shad Bibi; Naveen Kumar Singh; Roy N. Dsouza; Muhammad Aasim; Marcelo Fernández-Lahore

Megaporous cryogels with metal-ion affinity functionality, which possess enhanced protein-binding ability, were synthesized and their properties were investigated. These highly porous materials (pore sizes up to 100 μm) allowed the direct capture of a recombinant His(6)-tagged protein from a partially clarified extract. The total ligand density of the material was found to be 770 μmol/g. Application of a partially clarified cell extract in order to recover a His(6)-tagged protein (NAD(P)H-dependent 2-cyclohexen-1-one-reductase) yielded 12 mg of highly purified recombinant product per gram of adsorbent. Increased dynamic binding capacities were observed upon larger degrees of grafting, although some reduction in the quality of the system hydrodynamics was also observed. Nevertheless, these immobilized metal-ion affinity cryogels show potential for a convenient single-step purification of recombinant proteins from raw cell extracts without the need for laborious pre-chromatographic sample clean-up procedures.


Journal of Physical Chemistry B | 2013

Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield.

Maik H. Jacob; Roy N. Dsouza; Indrajit Ghosh; Amir Norouzy; Thomas Schwarzlose; Werner M. Nau

The structural and dynamic properties of a flexible peptidic chain codetermine its biological activity. These properties are imprinted in intrachain site-to-site distances as well as in diffusion coefficients of mutual site-to-site motion. Both distance distribution and diffusion determine the extent of Förster resonance energy transfer (FRET) between two chain sites labeled with a FRET donor and acceptor. Both could be obtained from time-resolved FRET measurements if their individual contributions to the FRET efficiency could be systematically varied. Because the FRET diffusion enhancement (FDE) depends on the donor-fluorescence lifetime, it has been proposed that the FDE can be reduced by shortening the donor lifetime through an external quencher. Benefiting from the high diffusion sensitivity of short-distance FRET, we tested this concept experimentally on a (Gly-Ser)(6) segment labeled with the donor/acceptor pair naphthylalanine/2,3-diazabicyclo[2.2.2]oct-2-ene (NAla/Dbo). Surprisingly, the very effective quencher potassium iodide (KI) had no effect at all on the average donor-acceptor distance, although the donor lifetime was shortened from ca. 36 ns in the absence of KI to ca. 3 ns in the presence of 30 mM KI. We show that the proposed approach had to fail because it is not the experimentally observed but the radiative donor lifetime that controls the FDE. Because of that, any FRET ensemble measurement can easily underestimate diffusion and might be misleading even if it employs the Haas-Steinberg diffusion equation (HSE). An extension of traditional FRET analysis allowed us to evaluate HSE simulations and to corroborate as well as generalize the experimental results. We demonstrate that diffusion-enhanced FRET depends on the radiative donor lifetime as it depends on the diffusion coefficient, a useful symmetry that can directly be applied to distinguish dynamic and structural effects of viscous cosolvents on the polymer chain. We demonstrate that the effective FRET rate and the recovered donor-acceptor distance depend on the quantum yield, most strongly in the absence of diffusion, which has to be accounted for in the interpretation of distance trends monitored by FRET.


Journal of Chromatography A | 2014

High capacity cryogel-type adsorbents for protein purification

Naveen Kumar Singh; Roy N. Dsouza; Mariano Grasselli; Marcelo Fernández-Lahore

Cryogel bodies were modified to obtain epoxy groups by graft-copolymerization using both chemical and gamma irradiation initiation techniques. The free epoxy adsorbents were reacted further to introduce diethylaminoethanol (DEAE) functionalities. The resulting weak anion-exchange cryogel adsorbents showed dynamic binding capacities of ca. 27±3mg/mL, which was significantly higher than previously reported for this type of adsorbent material. Gamma irradiated grafting initiation showed a 4-fold higher capacity for proteins than chemical grafting initiation procedures. The phosphate capacity for these DEAE cryogels was 119mmol/L and also showed similar column efficiency as compared to commercial adsorbents. The large pores in the cryogel structure ensure convective transport of the molecules to active binding sites located on the polymer-grafted surface of cryogels. However, as cryogels have relatively large pores (10-100μm), the BET area available for surface activation is low, and consequently, the capacity of the cryogels is relatively low for biomolecules, especially when compared to commercial beaded adsorbents. Nevertheless, we have shown that gamma ray mediated surface grafting of cryogel matrices greatly enhance their functional and adsorptive properties.


Food Research International | 2016

Biochemical fate of vicilin storage protein during fermentation and drying of cocoa beans

Neha Kumari; Kouame Jean Kofi; Sergio Grimbs; Roy N. Dsouza; Nikolai Kuhnert; Gino Vrancken; Matthias S. Ullrich

Key cocoa-specific aroma precursors are generated during the fermentation of cocoa beans via the proteolysis of the vicilin-like globulin. Previous studies had shown that degradation of this particular 566 amino acid-long storage protein leads to three distinct subunits with different molecular masses. Although oligopeptides generated from the proteolysis of vicilin-like globulin have been studied previously, changes occurring to vicilin at different stages of fermentation have not yet been explored in detail. The aim of this study was to investigate the fate of vicilin protein from the non-fermented stage up to the dried cocoa beans. Our results showed a remarkable shift in the electrophoretic mobility of vicilin towards higher pI during the onset of fermentation. The pI-shifted subunit was found susceptible to further degradation into a lower-molecular-weight vicilin subunit. The observed pI shift correlated with, but did not depend on protein phosphorylation. Glycosylation of some but not all vicilin subunits occurred at different stages of the fermentation process. Peptides generated from vicilin throughout fermentation were analyzed by UHPLC-ESI-MS/MS revealing an initial increase and subsequent decrease in the diversity of peptides with an increasing degree of fermentation. We furthermore describe the rate of degradation of different vicilin subunits. The detected diversity and dynamics of vicilin peptides will help to define biochemical markers of distinct steps of the fermentation process.


Journal of Organic Chemistry | 2008

Triple Molecular Recognition as a Directing Element in the Formation of Host−Guest Complexes with p-Sulfonatocalix[4]arene and β-Cyclodextrin

Roy N. Dsouza; Werner M. Nau

We have investigated a mixture consisting of p-sulfonatocalix[4]arene (CX4), beta-cyclodextrin (beta-CD), and 2,3-diazabicyclo[2.2.2]oct-2-ene (1) and its bridgehead-substituted derivative (2) in the absence and presence of Zn(2+). In the absence of Zn(2+), four equally populated host-guest complexes exist in solution, as projected from their comparable binding constants (ca. 1000 M(-1)). However, upon the addition of Zn(2+), the formation of a ternary complex, CX4 x 1 x Zn(2+), is induced by a synergy of three supramolecular interactions (Coulombic, hydrophobic, and weak metal-ligand bonding). Concomitantly, the CX4 x 2 complex is destabilized by competitive binding, which drives the system toward a state where only two complexes predominate: namely, CX4 x 1 x Zn(2+) and beta-CD x 2. Known binding constants for the multiple equilibria were used to model the complex system, and the results were consistent with experimental data obtained from 1D and 2D NMR as well as induced circular dichroism (ICD) spectroscopy. The combined results demonstrate how a subtle interplay between cooperative and competitive binding can be exploited to design a complex multicomponent sorting system.


Food Research International | 2017

Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans

Roy N. Dsouza; Sergio Grimbs; Britta Behrends; Herwig Bernaert; Matthias S. Ullrich; Nikolai Kuhnert

A comprehensive analysis of cocoa polyphenols from unfermented and fermented cocoa beans from a wide range of geographic origins was carried out to catalogue systematic differences based on their origin as well as fermentation status. This study identifies previously unknown compounds with the goal to ascertain, which of these are responsible for the largest differences between bean types. UHPLC coupled with ultra-high resolution time-of-flight mass spectrometry was employed to identify and relatively quantify various oligomeric proanthocyanidins and their glycosides amongst several other unreported compounds. A series of biomarkers allowing a clear distinction between unfermented and fermented cocoa beans and for beans of different origins were identified. The large sample set employed allowed comparison of statistically significant variations of key cocoa constituents.


Food Research International | 2016

Aseptic artificial fermentation of cocoa beans can be fashioned to replicate the peptide profile of commercial cocoa bean fermentations

Warren John; Neha Kumari; Nina L. Böttcher; Sergio Grimbs; Gino Vrancken; Roy N. Dsouza; Nikolai Kuhnert; Matthias S. Ullrich

The fermentation of cocoa beans is essential for the generation of flavour precursors that are required later on to form the flavour components of chocolate. From the many different precursors that are generated, oligopeptides and free amino acids comprise a significant proportion as some of them form Maillard reaction products during the roasting process. Therefore, the diversity of peptides is an important contributing factor to the quality of a fermentation which is in turn controlled by proteolytic activity within the cocoa bean, and is driven by changes in the presence of fermentation by-products as a result of microbial activity outside the bean. Being able to control proteolytic activity within the bean using only the presence of fermentation by-products would prove a valuable tool in the study of these proteases and the processing of cocoa storage proteins. Thus, this tool would help elucidate key mechanisms that generate the components responsible for flavour. In this study, we describe an artificial fermentation system, free from microbial activity, which is able to replicate proteolytic degradation of protein as well as to generate similar peptide fragments as seen during a commercial fermentation. It was also found that acidification is a main contributor to protein degradation.

Collaboration


Dive into the Roy N. Dsouza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Werner M. Nau

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio Grimbs

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariano Grasselli

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neha Kumari

Jacobs University Bremen

View shared research outputs
Researchain Logo
Decentralizing Knowledge