Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roy van der Meel is active.

Publication


Featured researches published by Roy van der Meel.


Advanced Drug Delivery Reviews | 2013

Ligand-targeted Particulate Nanomedicines Undergoing Clinical Evaluation: Current Status

Roy van der Meel; Laurens J. C. Vehmeijer; Robbert J. Kok; Gert Storm; Ethlinn V.B. van Gaal

Since the introduction of Doxil® on the market nearly 20years ago, a number of nanomedicines have become part of treatment regimens in the clinic. With the exception of antibody-drug conjugates, these nanomedicines are all devoid of targeting ligands and rely solely on their physicochemical properties and the (patho)physiological processes in the body for their biodistribution and targeting capability. At the same time, many preclinical studies have reported on nanomedicines exposing targeting ligands, or ligand-targeted nanomedicines, yet none of these have been approved at this moment. In the present review, we provide a concise overview of 13 ligand-targeted particulate nanomedicines (ligand-targeted PNMs) that have progressed into clinical trials. The progress of each ligand-targeted PNM is discussed based on available (pre)clinical data. Main conclusions of these analyses are that (a) ligand-targeted PNMs have proven to be safe and efficacious in preclinical models; (b) the vast majority of ligand-targeted PNMs is generated for the treatment of cancer; (c) contribution of targeting ligands to the PNM efficacy is not unambiguously proven; and (d) targeting ligands do not cause localization of the PNM within the target tissue, but rather provide benefits in terms of target cell internalization and target tissue retention once the PNM has arrived at the target site. Increased understanding of the in vivo fate and interactions of the ligand-targeted PNMs with proteins and cells in the human body is mandatory to rationally advance the clinical translation of ligand-targeted PNMs. Future perspectives for ligand-targeted PNM approaches include the delivery of drugs that are unable or inefficient in passing cellular membranes, treatment of drug resistant tumors, targeting of the tumor blood supply, the generation of targeted vaccines and nanomedicines that are able to cross the blood-brain barrier.


Journal of Controlled Release | 2010

Downregulation of EGFR by a novel multivalent nanobody-liposome platform

Sabrina Oliveira; Raymond M. Schiffelers; Joris van der Veeken; Roy van der Meel; Ranitha Vongpromek; Paul M.P. van Bergen en Henegouwen; Gert Storm; Rob C. Roovers

The epidermal growth factor receptor (EGFR) is a recognized target for tumor therapy and monoclonal antibodies (mAbs, e.g. cetuximab) have been developed to inhibit receptor activation. Besides blocking ligand (e.g. EGF) binding to the receptor, reports have shown that mAbs promote slow receptor internalization and degradation in lysosomes, i.e. downregulation. The efficacy of receptor downregulation was recently shown to depend on the size of receptor clusters formed at the cell surface. In this study, a multivalent platform is presented, consisting of nanobodies recognizing the ectodomain of EGFR (EGa1) coupled to PEG-liposomes, and the in vitro and in vivo effects of this system on EGFR internalization and downregulation were investigated. Nanobodies are the smallest functional antigen-binding immunoglobulin fragments and the EGa1 nanobody has been described as an EGFR-antagonist. EGa1-liposomes (EGa1-L) induced a more than 90% removal of EGFR from the cell surface, as a result of receptor internalization. Furthermore, this massive sequestration of EGFR mediated by EGa1-L lead to receptor degradation, while no degradation was detected with the monovalent nanobody. The downregulatory capacity here reported was found to be independent of the epitope on EGFR recognized by the grafted nanobody, and exclusive to the nanobody-liposomes, as anti-EGFR single chain variable fragments (scFv) coupled to liposomes were unable to induce this effect. Importantly, EGa1-L induced a significant inhibition of tumor cell proliferation, in vitro, an effect likely mediated by the combination of receptor downregulation and receptor antagonism. Also in vivo, EGFR downregulation was observed in tumors of mice intravenously injected with EGa1-L, indicating that this multivalent platform blocks ligand binding to the receptor and simultaneously induces the downregulation of EGFR.


Journal of Controlled Release | 2011

Nanobody — Shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting

Marina Talelli; Cristianne J.F. Rijcken; Sabrina Oliveira; Roy van der Meel; Paul M.P. van Bergen en Henegouwen; Twan Lammers; Cornelus F. van Nostrum; Gert Storm; Wim E. Hennink

The aim of this study was to develop poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate] (mPEG-b-p(HPMAm-Lac(n))) core-crosslinked thermosensitive biodegradable polymeric micelles suitable for active tumor targeting, by coupling the anti-EGFR (epidermal growth factor receptor) EGa1 nanobody to their surface. To this end, PEG was functionalized with N-succinimidyl 3-(2-pyridyldithio)-propionate (SPDP) to yield a PDP-PEG-b-p(HPMAm-Lac(n)) block copolymer. Micelles composed of 80% mPEG-b-p(HPMAm-Lac(n)) and 20% PDP-PEG-b-p(HPMAm-Lac(n)) were prepared and lysozyme (as a model protein) was modified with N-succinimidyl-S-acetylthioacetate, deprotected with hydroxylamine hydrochloride and subsequently coupled to the micellar surface. The micellar conjugates were characterized using SDS-PAGE and gel permeation chromatography (GPC). Using the knowledge obtained with lysozyme conjugation, the EGa1 nanobody was coupled to mPEG/PDP-PEG micelles and the conjugation was successful as demonstrated by western blot and dot blot analysis. Rhodamine labeled EGa1-micelles showed substantially higher binding as well as uptake by EGFR over-expressing cancer cells (A431 and UM-SCC-14C) than untargeted rhodamine labeled micelles. Interestingly, no binding of the nanobody micelles was observed to EGFR negative cells (3T3) as well as to14C cells in the presence of an excess of free nanobody. This demonstrates that the binding of the nanobody micelles is indeed by interaction with the EGF receptor. In conclusion, EGa1 decorated (mPEG/PDP-PEG)-b-(pHPMAm-Lac(n)) polymeric micelles are highly promising systems for active drug targeting.


ACS Nano | 2015

Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π–Π Stacking Stabilized Polymeric Micelles

Yang Shi; Roy van der Meel; Benjamin Theek; Erik Oude Blenke; Ebel H.E. Pieters; Marcel H.A.M. Fens; Josef Ehling; Raymond M. Schiffelers; Gert Storm; Cornelus F. van Nostrum; Twan Lammers; Wim E. Hennink

Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achiv prolonged circulation kinetics. As a result, PTX deposition in tumors is increased, while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed PTX-loaded micelles which are stable without chemical cross-linking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl)methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses, while they induced complete tumor regression in two different xenograft models (i.e., A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index.


Journal of Controlled Release | 2012

Tumor-targeted Nanobullets: Anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment

Roy van der Meel; Sabrina Oliveira; Isil Altintas; Rob Haselberg; Joris van der Veeken; Rob C. Roovers; Paul M.P. van Bergen en Henegouwen; Gert Storm; Wim E. Hennink; Raymond M. Schiffelers; Robbert J. Kok

The epidermal growth factor receptor (EGFR) is a validated target for anti-cancer therapy and several EGFR inhibitors are used in the clinic. Over the years, an increasing number of studies have reported on the crosstalk between EGFR and other receptors that can contribute to accelerated cancer development or even acquisition of resistance to anti-EGFR therapies. Combined targeting of EGFR and insulin-like growth factor 1 receptor (IGF-1R) is a rational strategy to potentiate anti-cancer treatment and possibly retard resistance development. In the present study, we have pursued this by encapsulating the kinase inhibitor AG538 in anti-EGFR nanobody-liposomes. The thus developed dual-active nanobody-liposomes associated with EGFR-(over)expressing cells in an EGFR-specific manner and blocked both EGFR and IGF-1R activation, due to the presence of the EGFR-blocking nanobody EGa1 and the anti-IGF-1R kinase inhibitor AG538 respectively. AG538-loaded nanobody-liposomes induced a strong inhibition of tumor cell proliferation even upon short-term exposure followed by a drug-free wash-out period. Therefore, AG538-loaded nanobody-liposomes are a promising anti-cancer formulation due to efficient intracellular delivery of AG538 in combination with antagonistic and downregulating properties of the EGa1 nanobody-liposomes.


Journal of Controlled Release | 2013

Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells.

Isil Altintas; Raimond Heukers; Roy van der Meel; Marie Lacombe; Maryam Amidi; Paul M.P. van Bergen en Henegouwen; Wim E. Hennink; Raymond M. Schiffelers; Robbert J. Kok

A novel, EGFR-targeted nanomedicine has been developed in the current study. Glutaraldehyde crosslinked albumin nanoparticles with a size of approximately 100nm were loaded with the multikinase inhibitor 17864-L(x)-a platinum-bound sunitinib analogue-which couples the drug to methionine residues of albumin and is released in a reductive environment. Albumin nanoparticles were surface-coated with bifunctional polyethylene glycol 3500 (PEG) and a nanobody-the single variable domain of an antibody-(Ega1) against the epidermal growth factor receptor (EGFR). EGa1-PEG functionalized nanoparticles showed a 40-fold higher binding to EGFR-positive 14C squamous head and neck cancer cells in comparison to PEGylated nanoparticles. 17864-L(x) loaded EGa1-PEG nanoparticles were internalized by clathrin-mediated endocytosis and ultimately digested in lysosomes. The intracellular routing of EGa1 targeted nanoparticles leads to a successful release of the kinase inhibitor in the cell and inhibition of proliferation whereas the non-targeted formulations had no antiproliferative effects on 14C cells. The drug loaded targeted nanoparticles were as effective as the free drug in vitro. These results demonstrate that multikinase inhibitor loaded nanoparticles are interesting nanomedicines for the treatment of EGFR-positive cancers.


Drug Discovery Today | 2011

The VEGF/Rho GTPase signalling pathway: A promising target for anti-angiogenic/anti-invasion therapy

Roy van der Meel; Marc Symons; Robert Kudernatsch; Robbert J. Kok; Raymond M. Schiffelers; Gert Storm; William M. Gallagher; Annette T. Byrne

It has become increasingly apparent that current antiangiogenic therapy elicits modest effects in clinical settings. In addition, it remains challenging to treat cancer metastasis through antiangiogenic regimes. Rho GTPases are essential for vascular endothelial growth factor (VEGF)-mediated angiogenesis and are involved in tumour cell invasion. This review discusses novel therapeutic strategies that interfere with Rho GTPase signalling and further explores this network as a target for anticancer therapy through interference with tumour angiogenesis and invasion. Recent findings describe the development of innovative Rho GTPase inhibitors. Positive clinical effects of Rho GTPase targeting in combination with conventional anticancer therapy is of increasing interest.


Drug Discovery Today | 2010

Recent advances in molecular imaging biomarkers in cancer: application of bench to bedside technologies.

Roy van der Meel; William M. Gallagher; Sabrina Oliveira; Aisling E. O’Connor; Raymond M. Schiffelers; Annette T. Byrne

Molecular imaging is the visualization, characterization and measurement of biological processes at the molecular and cellular level. In oncology, molecular imaging approaches can be directly applied as translational biomarkers of disease progression. In this article, selected imaging modalities are discussed with respect to this role. Recent studies focusing on emerging imaging biomarkers and new developments in the field are highlighted. Importantly, because ex vivo or tissue-based imaging now represents an important tool in the discovery and validation of oncology biomarkers, special attention is given to this resurgent field.


International Journal of Laboratory Hematology | 2014

Toward routine detection of extracellular vesicles in clinical samples

Roy van der Meel; M. Krawczyk‐Durka; W. W. Solinge; Raymond M. Schiffelers

The majority, if not all, of human cell types secrete extracellular vesicles (EVs) into their environment, at least partly as a means of intercellular communication. These secreted vesicles can be detected in most bodily fluids including blood, urine, and saliva. The number of secreted vesicles and their composition is altered in various pathological conditions, raising opportunities to exploit EVs as diagnostic and/or prognostic biomarkers. For this to become a reality, it is important to reach consensus regarding the standardization of protocols for sample collection, EV isolation, handling, and storage for valid comparison and interpretation of measurements. Depending on the information required, there are several detection options including EV number and size distribution, molecular surface markers, procoagulation activity, and RNA content. For these purposes, different techniques are currently utilized or under development. This review discusses the techniques that have the potential to become standard EV detection methods in a clinical diagnostic setting. In addition to the accuracy of the detection technique, other factors such as high‐throughput, cost‐effectiveness, time consumption, and required operator skill are important to consider. A combination of increasing fundamental knowledge, technological progress, standardization of sample collection, and processing protocols is required for EVs to become reliable predictors of altered physiology or development of disease suitable for routine clinical diagnostics. Cancer and (cardio)vascular disorders are examples of pathologies where EV detection may be applied in the near future for diagnosis and/or prognosis.


European Journal of Pharmaceutical Sciences | 2015

An in situ gelling liquid crystalline system based on monoglycerides and polyethylenimine for local delivery of siRNAs

Lívia Neves Borgheti-Cardoso; Lívia Vieira Depieri; Sander A.A. Kooijmans; Henrique Diniz; Ricardo Alexandre Junqueira Calzzani; Fabiana T. M. C. Vicentini; Roy van der Meel; M.C.A. Fantini; Mamie Mizusaki Iyomasa; Raymond M. Schiffelers; Maria Vitória Lopes Badra Bentley

The development of delivery systems able to complex and release siRNA into the cytosol is essential for therapeutic use of siRNA. Among the delivery systems, local delivery has advantages over systemic administration. In this study, we developed and characterized non-viral carriers to deliver siRNA locally, based on polyethylenimine (PEI) as gene carrier, and a self-assembling drug delivery system that forms a gel in situ. Liquid crystalline formulations composed of monoglycerides (MO), PEI, propylene glycol (PG) and 0.1M Tris buffer pH 6.5 were developed and characterized by polarized light microscopy, Small Angle X-ray Scattering (SAXS), for their ability to form inverted type liquid crystalline phases (LC2) in contact with excess water, water absorption capacity, ability to complex with siRNA and siRNA release. In addition, gel formation in vivo was determined by subcutaneous injection of the formulations in mice. In water excess, precursor fluid formulations rapidly transformed into a viscous liquid crystalline phase. The presence of PEI influences the liquid crystalline structure of the LC2 formed and was crucial for complexing siRNA. The siRNA was released from the crystalline phase complexed with PEI. The release rate was dependent on the rate of water uptake. The formulation containing MO/PEI/PG/Tris buffer at 7.85:0.65:76.5:15 (w/w/w/w) complexed with 10 μM of siRNA, characterized as a mixture of cubic phase (diamond-type) and inverted hexagonal phase (after contact with excess water), showed sustained release for 7 days in vitro. In mice, in situ gel formation occurred after subcutaneous injection of the formulations, and the gels were degraded in 30 days. Initially a mild inflammatory process occurred in the tissue surrounding the gel; but after 14 days the tissue appeared normal. Taken together, this work demonstrates the rational development of an in situ gelling formulation for local release of siRNA.

Collaboration


Dive into the Roy van der Meel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pieter R. Cullis

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jayesh A. Kulkarni

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge