Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Royce A. Wilkinson is active.

Publication


Featured researches published by Royce A. Wilkinson.


Journal of Immunology | 2004

Immunological characteristics associated with the protective efficacy of antibodies to ricin.

Massimo Maddaloni; Corrie L. Cooke; Royce A. Wilkinson; Audrey V. Stout; Leta Eng; Seth H. Pincus

A/B toxins, produced by bacteria and plants, are among the deadliest molecules known. The B chain binds the cell, whereas the A chain exerts the toxic effect. Both anti-A chain and anti-B chain Abs can neutralize toxins in vivo and in vitro. B chain Abs block binding of the toxin to the cell. It is not known how anti-A chain Abs function. Working with ricin toxin, we demonstrate that immunization with A chain induces greater protection than immunization with B chain. A panel of mAbs, binding to A chain, B chain, or both chains, has been produced and characterized. Immunologic characteristics evaluated include isotype, relative avidity, and epitope specificity. The ability to inhibit ricin enzymatic or cell binding activity was studied, as was the ability to block ricin-mediated cellular cytotoxicity on human and murine cell lines. Finally, the in vivo protective efficacy of the Abs in mice was studied. The Ab providing the greatest in vivo protective efficacy was directed against the A chain. It had the greatest relative avidity and the greatest ability to block enzymatic function and neutralize cytotoxicity. Interestingly, we also obtained an anti-A chain Ab that bound with high avidity, blocked enzymatic activity, did not neutralize cytotoxicity, and actually enhanced the in vivo toxicity of ricin. Anti-A chain Abs with moderate avidity had no in vivo effect, nor did any anti-B chain Abs.


Journal of Virology | 2005

Structure of the Fab Fragment of F105, a Broadly Reactive Anti-Human Immunodeficiency Virus (HIV) Antibody That Recognizes the CD4 Binding Site of HIV Type 1 gp120

Royce A. Wilkinson; Chayne Piscitelli; Martin Teintze; Lisa A. Cavacini; Marshall R. Posner; C. Martin Lawrence

ABSTRACT We have determined the crystal structure of the Fab fragment from F105, a broadly reactive human antibody with limited potency that recognizes the CD4 binding site of gp120. The structure reveals an extended CDR H3 loop with a phenylalanine residue at the apex and shows a striking pattern of serine and tyrosine residues. Modeling the interaction between gp120 and F105 suggests that the phenylalanine may recognize the binding pocket of gp120 used by Phe43 of CD4 and that numerous tyrosine and serine residues form hydrogen bonds with the main chain atoms of gp120. A comparison of the F105 structure to that of immunoglobulin G1 b12, a much more potent and broadly neutralizing antibody with an overlapping epitope, suggests similarities that contribute to the broad recognition of human immunodeficiency virus by both antibodies. While the putative epitope for F105 shows significant overlap with that predicted for b12, it appears to differ from the b12 epitope in extending across the interface between the inner and outer domains of gp120. In contrast, the CDR loops of b12 appear to interact predominantly with the outer domain of gp120. The difference between the predicted epitopes for b12 and F105 suggests that the unique potency of b12 may arise from its ability to avoid the interface between the inner and outer domains of gp120.


Journal of Immunology | 2003

In Vivo Efficacy of Anti-Glycoprotein 41, But Not Anti-Glycoprotein 120, Immunotoxins in a Mouse Model of HIV Infection

Seth H. Pincus; Hua Fang; Royce A. Wilkinson; Tamera K. Marcotte; James E. Robinson; William C. Olson

Immunotoxins (ITs) targeting the HIV envelope protein are among the most efficacious antiviral therapies when tested in vitro. Yet a first-generation IT targeted to gp120, CD4-PE40 (chimeric immunotoxin using CD4 and the translocation and enzymatic domains of Pseudomonas exotoxin A), showed limited promise in initial clinical testing, highlighting the need for improved ITs. We have used a new mouse model of HIV infection to test the comparative efficacy of anti-HIV ITs targeted to gp120 or to gp41. Irradiated SCID/nonobese diabetic mice are injected with a tumor of human CD4+ cells susceptible to infection and at a separate site persistently HIV-infected cells. The spread of infection from infected to susceptible tumor is monitored by plasma p24 and the presence of HIV-infected cells in the spleen. Anti-gp41 ITs in combination with tetrameric CD4-human Ig fusion protein have pronounced anti-HIV effects. Little if any anti-HIV efficacy was found with either CD4-PE40 or an Ab-targeted anti-gp120 IT. These data support continued exploration of the utility of ITs for HIV infection, particularly the use of anti-gp41 ITs in combination with soluble CD4 derivatives.


Molecular Pharmaceutics | 2016

Programmed Self-Assembly of an Active P22-Cas9 Nanocarrier System.

Shefah Qazi; Heini M. Miettinen; Royce A. Wilkinson; Kimberly McCoy; Trevor Douglas; Blake Wiedenheft

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) RNA-guided endonucleases are powerful new tools for targeted genome engineering. These nucleases provide an efficient and precise method for manipulating eukaryotic genomes; however, delivery of these reagents to specific cell-types remains challenging. Virus-like particles (VLPs) derived from bacteriophage P22, are robust supramolecular protein cage structures with demonstrated utility for cell type-specific delivery of encapsulated cargos. Here, we genetically fuse Cas9 to a truncated form of the P22 scaffold protein, which acts as a template for capsid assembly as well as a specific encapsulation signal for Cas9. Our results indicate that Cas9 and a single-guide RNA are packaged inside the P22 VLP, and activity assays indicate that this RNA-guided endonuclease is functional for sequence-specific cleavage of dsDNA targets. This work demonstrates the potential for developing P22 as a delivery vehicle for cell specific targeting of Cas9.


F1000 Medicine Reports | 2014

A CRISPR method for genome engineering

Royce A. Wilkinson; Blake Wiedenheft

Clustered regularly interspaced short palindromic repeat (CRISPR) RNA-guided adaptive immune systems that protect bacteria and archaea from infection by viruses are now being routinely repurposed for genome engineering in a wide variety of cell types and multicellular organisms.


Antimicrobial Agents and Chemotherapy | 2011

Novel Compounds Containing Multiple Guanide Groups That Bind the HIV Coreceptor CXCR4

Royce A. Wilkinson; Seth H. Pincus; Joyce B. Shepard; Sarah K. Walton; Edward P. Bergin; Mohamed E. Labib; Martin Teintze

ABSTRACT The G-protein-coupled receptor CXCR4 acts as a coreceptor for human immunodeficiency virus type 1 (HIV-1) infection, as well as being involved in signaling cell migration and proliferation. Compounds that block CXCR4 interactions have potential uses as HIV entry inhibitors to complement drugs such as maraviroc that block the alternate coreceptor CCR5 or in cancer therapy. The peptide T140, which contains five arginine residues, is the most potent antagonist of CXCR4 developed to date. In a search for nonpeptide CXCR4 ligands that could inhibit HIV entry, three series of compounds were synthesized from 12 linear and branched polyamines with 2, 3, 4, 6, or 8 amino groups, which were substituted to produce the corresponding guanidines, biguanides, or phenylguanides. The resulting compounds were tested for their ability to compete with T140 for binding to the human CXCR4 receptor expressed on mammalian cells. The most effective compounds bound CXCR4 with a 50% inhibitory concentration of 200 nM, and all of the compounds had very low cytotoxicity. Two series of compounds were then tested for their ability to inhibit the infection of TZM-bl cells with X4 and R5 strains of HIV-1. Spermine phenylguanide and spermidine phenylguanide inhibited infection by X4 strains, but not by R5 strains, at low micromolar concentrations. These results support further investigation and development of these compounds as HIV entry inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity

MaryClare F. Rollins; Saikat Chowdhury; Joshua Carter; Sarah Golden; Royce A. Wilkinson; Joseph Bondy-Denomy; Gabriel C. Lander; Blake Wiedenheft

Significance Prokaryotes have adaptive immune systems that rely on CRISPRs (clustered regularly interspaced short palindromic repeats) and diverse CRISPR-associated (cas) genes. Cas1 and Cas2 are conserved components of CRISPR systems that are essential for integrating fragments of foreign DNA into CRISPR loci. In type I-F immune systems, the Cas2 adaptation protein is fused to the Cas3 interference protein. Here we show that the Cas2/3 fusion protein from Pseudomonas aeruginosa stably associates with the Cas1 adaptation protein, forming a 375-kDa propeller-shaped Cas1–2/3 complex. We show that Cas1, in addition to being an essential adaptation protein, also functions as a repressor of Cas2/3 nuclease activity and that foreign DNA binding by the CRISPR RNA-guided surveillance complex activates the Cas2/3 nuclease. The type I-F CRISPR adaptive immune system in Pseudomonas aeruginosa (PA14) consists of two CRISPR loci and six CRISPR-associated (cas) genes. Type I-F systems rely on a CRISPR RNA (crRNA)-guided surveillance complex (Csy complex) to bind foreign DNA and recruit a trans-acting nuclease (i.e., Cas2/3) for target degradation. In most type I systems, Cas2 and Cas3 are separate proteins involved in adaptation and interference, respectively. However, in I-F systems, these proteins are fused into a single polypeptide. Here we use biochemical and structural methods to show that two molecules of Cas2/3 assemble with four molecules of Cas1 (Cas2/32:Cas14) into a four-lobed propeller-shaped structure, where the two Cas2 domains form a central hub (twofold axis of symmetry) flanked by two Cas1 lobes and two Cas3 lobes. We show that the Cas1 subunits repress Cas2/3 nuclease activity and that foreign DNA recognition by the Csy complex activates Cas2/3, resulting in bidirectional degradation of DNA targets. Collectively, this work provides a structure of the Cas1–2/3 complex and explains how Cas1 and the target-bound Csy complex play opposing roles in the regulation of Cas2/3 nuclease activity.


AIDS Research and Human Retroviruses | 2007

Peptides selected from a phage display library with an HIV-neutralizing antibody elicit antibodies to HIV gp120 in rabbits, but not to the same epitope.

Royce A. Wilkinson; Jody R. Evans; Jon M. Jacobs; Dustin Slunaker; Seth H. Pincus; Abraham Pinter; Charles A. Parkos; James B. Burritt; Martin Teintze

Monoclonal antibodies specific for the conserved CD4 binding site region of the HIV envelope protein gp120 were used to select phage from two different random peptide display libraries. Synthetic peptides were made with sequences corresponding to those displayed on the selected phage, and peptide-protein fusions were expressed that contained the selected phage-displayed peptide sequence and either the N-terminal domain of the phage pIII protein or the small heat shock protein of Methanococcus jannaschii or both. For monoclonal antibody 5145A, these constructs containing the selected peptide sequences were all capable of specifically inhibiting the binding of 5145A to HIV-1 gp120. Rabbits immunized with peptide-protein fusions produced antisera that bound to recombinant HIV-1 gp120, but did not bind to HIV-infected cells nor neutralize HIV. The antisera also did not compete with CD4 or antibodies to the CD4 binding site for binding to gp120.


PLOS ONE | 2014

Antibacterial Activity of THAM Trisphenylguanide against Methicillin-Resistant Staphylococcus aureus

Alan J. Weaver; Joyce B. Shepard; Royce A. Wilkinson; Robert L. Watkins; Sarah K. Walton; Amanda R. Radke; Thomas J. Wright; Milat B. Awel; Catherine Cooper; Elizabeth Erikson; Mohamed E. Labib; Jovanka M. Voyich; Martin Teintze

This study investigated the potential antibacterial activity of three series of compounds synthesized from 12 linear and branched polyamines with 2–8 amino groups, which were substituted to produce the corresponding guanides, biguanides, or phenylguanides, against Acinetobacter baumannii, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Antibacterial activity was measured for each compound by determining the minimum inhibitory concentration against the bacteria, and the toxicity towards mammalian cells was determined. The most effective compound, THAM trisphenylguanide, was studied in time-to-kill and cytoplasmic leakage assays against methicillin-resistant Staphylococcus aureus (MRSA, USA300) in comparison to chlorhexidine. Preliminary toxicity and MRSA challenge studies in mice were also conducted on this compound. THAM trisphenylguanide showed significant antibacterial activity (MIC ∼1 mg/L) and selectivity against MRSA relative to all the other bacteria examined. In time-to-kill assays it showed increased antimicrobial activity against MRSA versus chlorhexidine. It induced leakage of cytoplasmic content at concentrations that did not reduce cell viability, suggesting the mechanism of action may involve membrane disruption. Using an intraperitoneal mouse model of invasive MRSA disease, THAM trisphenylguanide reduced bacterial burden locally and in deeper tissues. This study has identified a novel guanide compound with selective microbicidal activity against Staphylococcus aureus, including a methicillin-resistant (MRSA) strain.


Bioorganic & Medicinal Chemistry Letters | 2013

Improved guanide compounds which bind the CXCR4 co-receptor and inhibit HIV-1 infection.

Royce A. Wilkinson; Seth H. Pincus; Kejing Song; Joyce B. Shepard; Alan J. Weaver; Mohamed E. Labib; Martin Teintze

The G-protein coupled receptor CXCR4 is a co-receptor for HIV-1 infection and is involved in signaling cell migration and proliferation. In a previous study of non-peptide, guanide-based CXCR4-binding compounds, spermine and spermidine phenylguanides inhibited HIV-1 entry at low micromolar concentrations. Subsequently, crystal structures of CXCR4 were used to dock a series of naphthylguanide derivatives of the polyamines spermidine and spermine. Synthesis and evaluation of the naphthylguanide compounds identified our best compound, spermine tris-1-naphthylguanide, which bound CXCR4 with an IC(50) of 40 nM and inhibited the infection of TZM-bl cells with X4, but not R5, strains of HIV-1 with an IC(50) of 50-100 nM.

Collaboration


Dive into the Royce A. Wilkinson's collaboration.

Top Co-Authors

Avatar

Martin Teintze

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seth H. Pincus

Montana State University

View shared research outputs
Top Co-Authors

Avatar

Hua Fang

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan J. Weaver

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge