Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seth H. Pincus is active.

Publication


Featured researches published by Seth H. Pincus.


Journal of Immunology | 2004

Immunological characteristics associated with the protective efficacy of antibodies to ricin.

Massimo Maddaloni; Corrie L. Cooke; Royce A. Wilkinson; Audrey V. Stout; Leta Eng; Seth H. Pincus

A/B toxins, produced by bacteria and plants, are among the deadliest molecules known. The B chain binds the cell, whereas the A chain exerts the toxic effect. Both anti-A chain and anti-B chain Abs can neutralize toxins in vivo and in vitro. B chain Abs block binding of the toxin to the cell. It is not known how anti-A chain Abs function. Working with ricin toxin, we demonstrate that immunization with A chain induces greater protection than immunization with B chain. A panel of mAbs, binding to A chain, B chain, or both chains, has been produced and characterized. Immunologic characteristics evaluated include isotype, relative avidity, and epitope specificity. The ability to inhibit ricin enzymatic or cell binding activity was studied, as was the ability to block ricin-mediated cellular cytotoxicity on human and murine cell lines. Finally, the in vivo protective efficacy of the Abs in mice was studied. The Ab providing the greatest in vivo protective efficacy was directed against the A chain. It had the greatest relative avidity and the greatest ability to block enzymatic function and neutralize cytotoxicity. Interestingly, we also obtained an anti-A chain Ab that bound with high avidity, blocked enzymatic activity, did not neutralize cytotoxicity, and actually enhanced the in vivo toxicity of ricin. Anti-A chain Abs with moderate avidity had no in vivo effect, nor did any anti-B chain Abs.


Journal of Immunology | 2003

In Vivo Efficacy of Anti-Glycoprotein 41, But Not Anti-Glycoprotein 120, Immunotoxins in a Mouse Model of HIV Infection

Seth H. Pincus; Hua Fang; Royce A. Wilkinson; Tamera K. Marcotte; James E. Robinson; William C. Olson

Immunotoxins (ITs) targeting the HIV envelope protein are among the most efficacious antiviral therapies when tested in vitro. Yet a first-generation IT targeted to gp120, CD4-PE40 (chimeric immunotoxin using CD4 and the translocation and enzymatic domains of Pseudomonas exotoxin A), showed limited promise in initial clinical testing, highlighting the need for improved ITs. We have used a new mouse model of HIV infection to test the comparative efficacy of anti-HIV ITs targeted to gp120 or to gp41. Irradiated SCID/nonobese diabetic mice are injected with a tumor of human CD4+ cells susceptible to infection and at a separate site persistently HIV-infected cells. The spread of infection from infected to susceptible tumor is monitored by plasma p24 and the presence of HIV-infected cells in the spleen. Anti-gp41 ITs in combination with tetrameric CD4-human Ig fusion protein have pronounced anti-HIV effects. Little if any anti-HIV efficacy was found with either CD4-PE40 or an Ab-targeted anti-gp120 IT. These data support continued exploration of the utility of ITs for HIV infection, particularly the use of anti-gp41 ITs in combination with soluble CD4 derivatives.


Experimental Lung Research | 2007

OROPHARYNGEAL ASPIRATION OF RICIN AS A LUNG CHALLENGE MODEL FOR EVALUATION OF THE THERAPEUTIC INDEX OF ANTIBODIES AGAINST RICIN A-CHAIN FOR POST-EXPOSURE TREATMENT

Timothy S. Pratt; Seth H. Pincus; Martha L. Hale; Andre L. Moreira; Chad J. Roy; Kam-Meng Tchou-Wong

To investigate the effectiveness of passive antibody treatment as post-exposure therapy for ricin, we had developed an oropharyngeal aspiration model for ricin lethal challenge and antibody administration. When polyclonal anti-deglycosylated ricin A-chain antibody (dgA Ab) was administered between 1–18 hr after ricin challenge, all animals survived while delayed treatment to 24 hr resulted in 30% survival. The protective effects of dgA Ab correlated with inhibition of apoptosis in the lungs in vivo and in RAW264.7 macrophage and Jurkat T cells in vitro. In addition, ricin-induced cell cytotoxicity was inhibited by both dgA Ab and RAC18 monoclonal antibody against ricin A-chain. Administration of RAC18 monoclonal antibody at 4, 18, and 24 hr after ricin exposure resulted in 100%, 60% and 50% protection, respectively, suggesting that the therapeutic window for passive vaccination extended to at least 24 hr post-ricin lung challenge.


Laboratory Investigation | 2008

Post-exposure targeting of specific epitopes on ricin toxin abrogates toxin-induced hypoglycemia, hepatic injury, and lethality in a mouse model

James K. Roche; Matthew K. Stone; Lisa K. Gross; Matthew Lindner; Regina M. Seaner; Seth H. Pincus; Tom G. Obrig

Effects in the liver of fatal intoxication with the binary toxin ricin are unclear. We report a robust neutrophil influx into the liver of C57BL/6 mice after lethal parenteral ricin challenge, occurring in peri-portal and centro-lobular hepatic areas within 2 h, followed by the abrupt disappearance of hepatic macrophages/Kupffer cells. Chemokine profiles determined by microarray, ribonuclease protection assays, northern blotting, and enzyme-linked immunosorbent assays showed rapid (2 h) upregulation and persistence of those for neutrophils (CXCL1/KC, CXCL2/MIP-2) and monocytes (CCL2/MCP-1). Red blood cell pooling (8–12 h), loss of hepatocyte glycogen (8–48 h) associated with progressive hypoglycemia, fibrin deposition (24–48 h), and death (72–96 h) followed. Monoclonal antibody to ricin A chain, administered intravenously, blunted hypoglycemia, and abrogated death. This outcome was observed when anti-ricin antibody was given before toxin exposure as well as when administered approximately 10 h after toxin exposure. Targeting antibody to specific amino-acid sequences on the ricin A chain (HAEL and QXXWXXA) was critical to the therapeutic effect. Re-emergence of liver macrophages/Kupffer cells and replenishment of glycogen in previously depleted hepatocytes preceded full recovery of the host. These data identify critical events for liver injury and healing in ricin intoxication, as well as a new means and specific targets for post-exposure therapeutic intervention.


PLOS ONE | 2013

Antibody to Ricin A Chain Hinders Intracellular Routing of Toxin and Protects Cells Even after Toxin Has Been Internalized

Kejing Song; R. Ranney Mize; Luis Marrero; Miriam Corti; Jason M. Kirk; Seth H. Pincus

Background Mechanisms of antibody-mediated neutralization are of much interest. For plant and bacterial A-B toxins, A chain mediates toxicity and B chain binds target cells. It is generally accepted and taught that antibody (Ab) neutralizes by preventing toxin binding to cells. Yet for some toxins, ricin included, anti-A chain Abs afford greater protection than anti-B. The mechanism(s) whereby Abs to the A chain neutralize toxins are not understood. Methodology/Principal Findings We use quantitative confocal imaging, neutralization assays, and other techniques to study how anti-A chain Abs function to protect cells. Without Ab, ricin enters cells and penetrates to the endoplasmic reticulum within 15 min. Within 45–60 min, ricin entering and being expelled from cells reaches equilibrium. These results are consistent with previous observations, and support the validity of our novel methodology. The addition of neutralizing Ab causes ricin accumulation at the cell surface, delays internalization, and postpones retrograde transport of ricin. Ab binds ricin for >6hr as they traffic together through the cell. Ab protects cells even when administered hours after exposure. Conclusions/Key Findings We demonstrate the dynamic nature of the interaction between the host cell and toxin, and how Ab can alter the balance in favor of the cell. Ab blocks ricin’s entry into cells, hinders its intracellular routing, and can protect even after ricin is present in the target organelle, providing evidence that the major site of neutralization is intracellular. These data add toxins to the list of pathogenic agents that can be neutralized intracellularly and explain the in vivo efficacy of delayed administration of anti-toxin Abs. The results encourage the use of post-exposure passive Ab therapy, and show the importance of the A chain as a target of Abs.


Toxins | 2011

Passive and active vaccination strategies to prevent ricin poisoning.

Seth H. Pincus; Joan E. Smallshaw; Kejing Song; Jody Berry; Ellen S. Vitetta

Ricin toxin (RT) is derived from castor beans, produced by the plant Ricinus communis. RT and its toxic A chain (RTA) have been used therapeutically to arm ligands that target disease-causing cells. In most cases these ligands are cell-binding monoclonal antibodies (MAbs). These ligand-toxin conjugates or immunotoxins (ITs) have shown success in clinical trials [1]. Ricin is also of concern in biodefense and has been classified by the CDC as a Class B biothreat. Virtually all reports of RT poisoning have been due to ingestion of castor beans, since they grow abundantly throughout the world and are readily available. RT is easily purified and stable, and is not difficult to weaponize. RT must be considered during any “white powder” incident and there have been documented cases of its use in espionage [2,3]. The clinical syndrome resulting from ricin intoxication is dependent upon the route of exposure. Countermeasures to prevent ricin poisoning are being developed and their use will depend upon whether military or civilian populations are at risk of exposure. In this review we will discuss ricin toxin, its cellular mode of action, the clinical syndromes that occur following exposure and the development of pre- and post-exposure approaches to prevent of intoxication.


PLOS ONE | 2012

Identification and Characterization of a Broadly Cross-Reactive HIV-1 Human Monoclonal Antibody That Binds to Both gp120 and gp41

Mei-Yun Zhang; Tingting Yuan; Li J; Andrew Rosa Borges; Jennifer D. Watkins; Javier Guenaga; Zheng Yang; Yanping Wang; Richard Wilson; Yuxing Li; Victoria R. Polonis; Seth H. Pincus; Ruth M. Ruprecht; Dimiter S. Dimitrov

Identification of broadly cross-reactive HIV-1-neutralizing antibodies (bnAbs) may assist vaccine immunogen design. Here we report a novel human monoclonal antibody (mAb), designated m43, which co-targets the gp120 and gp41 subunits of the HIV-1 envelope glycoprotein (Env). M43 bound to recombinant gp140 s from various primary isolates, to membrane-associated Envs on transfected cells and HIV-1 infected cells, as well as to recombinant gp120 s and gp41 fusion intermediate structures containing N-trimer structure, but did not bind to denatured recombinant gp140 s and the CD4 binding site (CD4bs) mutant, gp120 D368R, suggesting that the m43 epitope is conformational and overlaps the CD4bs on gp120 and the N-trimer structure on gp41. M43 neutralized 34% of the HIV-1 primary isolates from different clades and all the SHIVs tested in assays based on infection of peripheral blood mononuclear cells (PBMCs) by replication-competent virus, but was less potent in cell line-based pseudovirus assays. In contrast to CD4, m43 did not induce Env conformational changes upon binding leading to exposure of the coreceptor binding site, enhanced binding of mAbs 2F5 and 4E10 specific for the membrane proximal external region (MPER) of gp41 Envs, or increased gp120 shedding. The overall modest neutralization activity of m43 is likely due to the limited binding of m43 to functional Envs which could be increased by antibody engineering if needed. M43 may represent a new class of bnAbs targeting conformational epitopes overlapping structures on both gp120 and gp41. Its novel epitope and possibly new mechanism(s) of neutralization could helpdesign improved vaccine immunogens and candidate therapeutics.


Journal of Biomolecular Structure & Dynamics | 2012

Inhibition of Protein-Protein Interaction of HER2-EGFR and HER2–HER3 by a Rationally Designed Peptidomimetic

Sashikanth Banappagari; Miriam Corti; Seth H. Pincus; Seetharama D. Satyanarayanajois

Protein–protein interactions (PPI) play a crucial role in many biological processes and modulation of PPI using small molecules to target hot spots has therapeutic value. As a model system we will use PPI of human epidermal growth factor receptors (EGFRs). Among the four EGFRs, EGFR–HER2 and HER2–HER3 are well known in cancer. We have designed a small molecule that is targeted to modulate HER2-mediated signaling. Our approach is novel because the small molecule designed disrupts dimerization not only of EGFR–HER2, but also of HER2–HER3. In the present study we have shown, using surface plasmon resonance analysis, that a peptidomimetic, compound 5, binds specifically to HER2 protein extracellular domain and disrupts the dimerization of EGFRs. To evaluate the effect of compound 5 on HER2 signaling in vitro, Western blot and PathHunter assays were used. Results indicated that compound 5 inhibits the phosphorylation of HER2 kinase domain and inhibits the heterodimerization in a dose-dependent manner. Molecular modeling methods were used to model the PPI of HER2–HER3 heterodimer.


Current Topics in Microbiology and Immunology | 2011

Animal Models of Ricin Toxicosis

Chad J. Roy; Kejing Song; Satheesh K. Sivasubramani; Donald Gardner; Seth H. Pincus

Animal models of ricin toxicosis are necessary for testing the efficacy of therapeutic measures, as well studying the mechanisms by which ricin exerts its toxicity in intact animals. Because ricin can serve as a particularly well-characterized model of tissue damage, and the host response to that damage, studies of the mechanisms of ricin toxicity may have more general applicability. For example, our studies of the molecular mechanisms underlying the development of ricin-induced hypoglycemia may help elucidate the relationship of type II diabetes, insulin resistance, and inflammation. Studies in non-human primates are most relevant for testing and developing agents having clinical utility. But these animals are expensive and limited in quantity, and so rodents are used for most mechanistic studies.


Antimicrobial Agents and Chemotherapy | 2011

Novel Compounds Containing Multiple Guanide Groups That Bind the HIV Coreceptor CXCR4

Royce A. Wilkinson; Seth H. Pincus; Joyce B. Shepard; Sarah K. Walton; Edward P. Bergin; Mohamed E. Labib; Martin Teintze

ABSTRACT The G-protein-coupled receptor CXCR4 acts as a coreceptor for human immunodeficiency virus type 1 (HIV-1) infection, as well as being involved in signaling cell migration and proliferation. Compounds that block CXCR4 interactions have potential uses as HIV entry inhibitors to complement drugs such as maraviroc that block the alternate coreceptor CCR5 or in cancer therapy. The peptide T140, which contains five arginine residues, is the most potent antagonist of CXCR4 developed to date. In a search for nonpeptide CXCR4 ligands that could inhibit HIV entry, three series of compounds were synthesized from 12 linear and branched polyamines with 2, 3, 4, 6, or 8 amino groups, which were substituted to produce the corresponding guanidines, biguanides, or phenylguanides. The resulting compounds were tested for their ability to compete with T140 for binding to the human CXCR4 receptor expressed on mammalian cells. The most effective compounds bound CXCR4 with a 50% inhibitory concentration of 200 nM, and all of the compounds had very low cytotoxicity. Two series of compounds were then tested for their ability to inhibit the infection of TZM-bl cells with X4 and R5 strains of HIV-1. Spermine phenylguanide and spermidine phenylguanide inhibited infection by X4 strains, but not by R5 strains, at low micromolar concentrations. These results support further investigation and development of these compounds as HIV entry inhibitors.

Collaboration


Dive into the Seth H. Pincus's collaboration.

Top Co-Authors

Avatar

Kejing Song

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Grace A. Maresh

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ellen S. Vitetta

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimiter S. Dimitrov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Howard B. Dickler

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge