Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ru Liu-Bryan is active.

Publication


Featured researches published by Ru Liu-Bryan.


Journal of Biological Chemistry | 2007

A Subpopulation of Macrophages Infiltrates Hypertrophic Adipose Tissue and Is Activated by Free Fatty Acids via Toll-like Receptors 2 and 4 and JNK-dependent Pathways

M. T. Audrey Nguyen; Svetlana Favelyukis; Anh-Khoi Nguyen; Donna Reichart; Peter A. Scott; Alan Jenn; Ru Liu-Bryan; Christopher K. Glass; Jaap G. Neels; Jerrold M. Olefsky

Obesity and type 2 diabetes are characterized by decreased insulin sensitivity, elevated concentrations of free fatty acids (FFAs), and increased macrophage infiltration in adipose tissue (AT). Here, we show that FFAs can cause activation of RAW264.7 cells primarily via the JNK signaling cascade and that TLR2 and TLR4 are upstream of JNK and help transduce FFA proinflammatory signals. We also demonstrate that F4/80+CD11b+CD11c+ bone marrow-derived dendritic cells (BMDCs) have heightened proinflammatory activity compared with F4/80+CD11b+CD11c- bone marrow-derived macrophages and that the proinflammatory activity and JNK phosphorylation of BMDCs, but not bone marrow-derived macrophages, was further increased by FFA treatment. F4/80+CD11b+CD11c+ cells were found in AT, and the proportion and number of these cells in AT is increased in ob/ob mice and by feeding wild type mice a high fat diet for 1 and 12 weeks. AT F4/80+CD11b+CD11c+ cells express increased inflammatory markers compared with F4/80+CD11b+CD11c- cells, and FFA treatment increased inflammatory responses in these cells. In addition, we found that CD11c expression is increased in skeletal muscle of high fat diet-fed mice and that conditioned medium from FFA-treated wild type BMDCs, but not TLR2/4 DKO BMDCs, can induce insulin resistance in L6 myotubes. Together our results show that FFAs can activate CD11c+ myeloid proinflammatory cells via TLR2/4 and JNK signaling pathways, thereby promoting inflammation and subsequent cellular insulin resistance.


Journal of Immunology | 2005

TLR2 Signaling in Chondrocytes Drives Calcium Pyrophosphate Dihydrate and Monosodium Urate Crystal-Induced Nitric Oxide Generation

Ru Liu-Bryan; Kenneth P.H. Pritzker; Gary S. Firestein; Robert Terkeltaub

Microcrystals of calcium pyrophosphate dihydrate (CPPD) and monosodium urate (MSU) deposited in synovium and articular cartilage initiate joint inflammation and cartilage degradation in large part by binding and directly activating resident cells. TLRs trigger innate host defense responses to infectious pathogens, and the expression of certain TLRs by synovial fibroblasts has revealed the potential for innate immune responses to be triggered by mesenchymally derived resident cells in the joint. In this study we tested the hypothesis that chondrocytes also express TLRs and that one or more TLRs centrally mediate chondrocyte responsiveness to CPPD and MSU crystals in vitro. We detected TLR2 expression in normal articular chondrocytes and up-regulation of TLR2 in osteoarthritic cartilage chondrocytes in situ. We demonstrated that transient transfection of TLR2 signaling-negative regulator Toll-interacting protein or treatment with TLR2-blocking Ab suppressed CPPD and MSU crystal-induced chondrocyte release of NO, an inflammatory mediator that promotes cartilage degeneration. Conversely, gain-of-function of TLR2 in normal chondrocytes via transfection was associated with increased CPPD and MSU crystal-induced NO release. Canonical TLR signaling by parallel pathways involving MyD88, IL-1R-associated kinase 1, TNF receptor-associated factor 6, and IκB kinase and Rac1, PI3K, and Akt critically mediated NO release in chondrocytes stimulated by both CPPD and MSU crystals. We conclude that CPPD and MSU crystals critically use TLR2-mediated signaling in chondrocytes to trigger NO generation. Our results indicate the potential for innate immunity at the level of the articular chondrocyte to directly contribute to inflammatory and degenerative tissue reactions associated with both gout and pseudogout.


Arthritis & Rheumatism | 2009

Caspase 1–independent activation of interleukin-1β in neutrophil-predominant inflammation

Monica Guma; Lisa Ronacher; Ru Liu-Bryan; Shinji Takai; Michael Karin; Maripat Corr

OBJECTIVE Interleukin-1beta (IL-1beta) is a key cytokine linked to the pathogenesis of acute arthritis. Caspase 1, neutrophil elastase, and chymase all process proIL-1beta to its biologically active form. This study was undertaken to examine the potential contributions of each of these proteases in experimental models of inflammatory arthritis. METHODS Caspase 1-deficient (Casp1-/-) and wild-type (WT) mice were tested for their response to arthritogenic K/BxN serum transfer for induction of arthritis or injection of monosodium urate monohydrate (MSU) crystals for induction of peritonitis. All mice were prophylactically treated with inhibitors of neutrophil elastase or chymase. Arthritic paws were tested for the presence of IL-1beta protein by enzyme-linked immunosorbent assay and Western blotting. Neutrophils and mast cells from WT and mutant mice were tested for their ability to secrete IL-1beta after in vitro stimulation, in the presence of protease inhibitors. RESULTS Casp1-/- and WT mice developed paw swelling to the same extent in the K/BxN serum transfer-induced arthritis model. MSU crystal injection into Casp1-/- mice also resulted in neutrophil influx and production of measurable peritoneal IL-1beta protein. Both of these responses were attenuated with neutrophil elastase inhibitors. K/BxN serum transfer-induced arthritis was also reduced by treatment with a chymase inhibitor. Casp1-/- neutrophils and mast cells, when exposed to MSU crystals, secreted similar amounts of IL-1beta protein upon in vitro stimulation with lipopolysaccharide, albeit at lower levels than that secreted by WT cells. Elastase and chymase inhibitors reduced the amount of IL-1beta released by these cells. CONCLUSION The production of IL-1beta by neutrophils and mast cells is not exclusively dependent on caspase 1, and other proteases can compensate for the loss of caspase 1 in vivo. These pathways might therefore compromise the caspase 1-targeted therapies in neutrophil-predominant arthritis.


Journal of Immunology | 2006

Engagement of CD14 Mediates the Inflammatory Potential of Monosodium Urate Crystals

Peter Scott; Hong Ma; Suganya Viriyakosol; Robert Terkeltaub; Ru Liu-Bryan

Phagocyte ingestion of monosodium urate (MSU) crystals can induce proinflammatory responses and trigger acute gouty inflammation. Alternatively, the uptake of MSU crystals by mature macrophages can be noninflammatory and promote resolution of gouty inflammation. Macrophage activation by extracellular MSU crystals involves apparent recognition and ingestion mediated by TLR2 and TLR4, with subsequent intracellular recognition linked to caspase-1 activation and IL-1β processing driven by the NACHT-LRR-PYD-containing protein-3 inflammasome. In this study, we examined the potential role in gouty inflammation of CD14, a phagocyte-expressed pattern recognition receptor that functionally interacts with both TLR2 and TLR4. MSU crystals, but not latex beads, directly bound recombinant soluble (s) CD14 in vitro. CD14−/− bone marrow-derived macrophages (BMDMs) demonstrated unimpaired phagocytosis of MSU crystals but reduced p38 phosphorylation and ∼90% less IL-1β and CXCL1 release. Attenuated MSU crystal-induced IL-1β release in CD14−/− BMDMs was mediated by decreased pro-IL-1β protein expression and additionally by decreased caspase-1 activation and IL-1β processing consistent with diminished NACHT-LRR-PYD-containing protein-3 inflammasome activation. Coating of MSU crystals with sCD14, but not sTLR2 or sTLR4, restored IL-1β and CXCL1 production in CD14−/− BMDMs in vitro. Gain of function of CD14 directly enhanced TLR4-mediated signaling in response to MSU crystals in transfected Chinese hamster ovary cells in vitro. Last, MSU crystal-induced leukocyte influx at 6 h was reduced by∼75%, and local induction of IL-1β decreased by >80% in CD14−/− mouse s.c. air pouches in vivo. We conclude that engagement of CD14 is a central determinant of the inflammatory potential of MSU crystals.


Annals of the Rheumatic Diseases | 2009

Hyperalgesia, synovitis and multiple biomarkers of inflammation are suppressed by interleukin 1 inhibition in a novel animal model of gouty arthritis

Richard Torres; Lynn Macdonald; Susan D. Croll; Joel C. Reinhardt; Anthony Dore; Sean Stevens; Donna Hylton; John S. Rudge; Ru Liu-Bryan; Robert Terkeltaub; George D. Yancopoulos; Andrew J. Murphy

Background: Monosodium urate (MSU) and calcium pyrophosphate dihydrate (CPPD) crystal-induced interleukin 1 β (IL1β) release contributes to inflammation in subcutaneous air pouch and peritoneal models of acute gout and pseudogout. However, consequences of IL1 inhibition have not been explored in more clinically relevant models of crystal-induced arthritis. Objective: To develop a novel mouse model of acute gouty ankle arthritis and use it to assess the effects of genetic deletion of IL1 receptor type (IL1R1) and of exogenous mIL1 Trap (a high-affinity blocker of mouse IL1α and IL1β) on pain, synovitis and systemic inflammatory biomarkers. Methods: MSU crystals were injected into the mouse ankle joint and pain and ankle swelling were measured over 4 days. The effects of IL1 inhibition were determined in this model, and in the comparator models of crystal-induced peritonitis and subcutaneous air pouch inflammation. Results: Both IL1R1-null mice and mice pretreated with mIL1 Trap showed reduced neutrophil influx in MSU and CPPD crystal-induced peritonitis and air pouch models (p<0.05). In the ankle joint model, both IL1R1 knockout mice and pretreatment with mIL1 Trap were associated with significant reductions in MSU crystal-induced elevations in hyperalgesia, inflammation, serum amyloid A and the levels of multiple inflammatory cytokines and chemokines (p<0.05). Additionally, it was found that administration of mIL1 Trap after MSU crystal injection reduced established hyperalgesia and ankle swelling. Conclusions: IL1 inhibition both prevented and relieved pain and ankle joint inflammation in response to intra-articular MSU crystals in mice. Results suggested that IL1 Trap has the potential to both prevent and treat gouty arthritis.


Arthritis & Rheumatism | 2010

Chondrocyte innate immune myeloid differentiation factor 88–dependent signaling drives procatabolic effects of the endogenous toll‐like receptor 2/toll‐like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice

Ru Liu-Bryan; Robert Terkeltaub

OBJECTIVE Toll-like receptor 2 (TLR-2)/TLR-4-mediated innate immunity serves as a frontline antimicrobial host defense, but also modulates tissue remodeling and repair responses to endogenous ligands released during low-grade inflammation. We undertook the present study to assess whether the endogenous TLR-2/TLR-4 ligands low molecular weight hyaluronan (LMW-HA) and high mobility group box chromosomal protein 1 (HMGB-1), which are increased in osteoarthritic (OA) joints, drive procatabolic chondrocyte responses dependent on TLR-2 and TLR-4 signaling through the cytosolic adaptor myeloid differentiation factor 88 (MyD88). METHODS We studied mature femoral head cap cartilage explants and immature primary knee articular chondrocytes from TLR-2/TLR-4-double-knockout, MyD88-knockout, and congenic wild-type mice. Generation of nitric oxide (NO), degradation of hyaluronan, release of HMGB-1, matrix metalloproteinase 3 (MMP-3), and MMP-13, and protein expression of type X collagen were assessed by Griess reaction and Western blotting analyses. Expression of messenger RNA for type II and type X collagen, MMP-13, and RUNX-2 was examined by real-time quantitative reverse transcription-polymerase chain reaction. RESULTS Interleukin-1beta and TLR-2 and TLR-4 ligands induced both HMGB-1 release from chondrocytes and extracellular LMW-HA generation in normal chondrocytes. TLR-2/TLR-4(-/-) and MyD88(-/-) mouse cartilage explants and chondrocytes lost the capacity to mount procatabolic responses to both LMW-HA and HMGB-1, demonstrated by >95% suppression of NO production (P < 0.01), and attenuated induction of MMP-3 and MMP-13. Combined deficiency of TLR-2/TLR-4, or of MyD88 alone, also attenuated release of NO and blunted induction of MMP-3 and MMP-13 release. MyD88 was necessary for HMGB-1 and hyaluronidase 2 (which generates LMW-HA) to induce chondrocyte hypertrophy, which is implicated in OA progression. CONCLUSION MyD88-dependent TLR-2/TLR-4 signaling is essential for procatabolic responses to LMW-HA and HMGB-1, and MyD88 drives chondrocyte hypertrophy. Therefore, LMW-HA and HMGB-1 act as innate immune cytokine-like signals with the potential to modulate chondrocyte differentiation and function in OA progression.


Nature Medicine | 2010

Shifting HIFs in osteoarthritis

Matthew Husa; Ru Liu-Bryan; Robert Terkeltaub

There is no cure for osteoarthritis—the most common disease of the joints. By piecing together the molecular events that drive the progression of this debilitating disease, recent studies published in Nature Medicine put hypoxia-inducible factor-2α (HIF-2α) in the drivers seat, opening up new avenues for early detection and treatment (pages 678–686 and 687–693).


Arthritis & Rheumatism | 2011

Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α.

Robert Terkeltaub; Bing Yang; Martin Lotz; Ru Liu-Bryan

OBJECTIVE Interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) stimulate chondrocyte matrix catabolic responses, thereby compromising cartilage homeostasis in osteoarthritis (OA). AMP-activated protein kinase (AMPK), which regulates energy homeostasis and cellular metabolism, also exerts antiinflammatory effects in multiple tissues. This study was undertaken to test the hypothesis that AMPK activity limits chondrocyte matrix catabolic responses to IL-1β and TNFα. METHODS Expression of AMPK subunits was examined, and AMPKα activity was ascertained by the phosphorylation status of AMPKα Thr(172) in human knee articular chondrocytes and cartilage by Western blotting and immunohistochemistry, respectively. Procatabolic responses to IL-1β and TNFα, such as release of glycosaminoglycan, nitric oxide, and matrix metalloproteinases 3 and 13 were determined by dimethylmethylene blue assay, Griess reaction, and Western blotting, respectively, in cartilage explants and chondrocytes with and without knockdown of AMPKα by small interfering RNA. RESULTS Normal human knee articular chondrocytes expressed AMPKα1, α2, β1, β2, and γ1 subunits. AMPK activity was constitutively present in normal articular chondrocytes and cartilage, but decreased in OA articular chondrocytes and cartilage and in normal chondrocytes treated with IL-1β and TNFα. Knockdown of AMPKα resulted in enhanced catabolic responses to IL-1β and TNFα in chondrocytes. Moreover, AMPK activators suppressed cartilage/chondrocyte procatabolic responses to IL-1β and TNFα and the capacity of TNFα and CXCL8 (IL-8) to induce type X collagen expression. CONCLUSION Our findings indicate that AMPK activity is reduced in OA cartilage and in chondrocytes following treatment with IL-1β or TNFα. AMPK activators attenuate dephosphorylation of AMPKα and procatabolic responses in chondrocytes induced by these cytokines. These observations suggest that maintenance of AMPK activity supports cartilage homeostasis by protecting cartilage matrix from inflammation-induced degradation.


Current Rheumatology Reports | 2013

Synovium and the innate inflammatory network in osteoarthritis progression.

Ru Liu-Bryan

This review focuses on the recent advancements in the understanding of innate immunity in the pathogenesis of osteoarthritis, particularly with attention to the roles of damage-associated molecular patterns (DAMPs), pattern recognition receptors (PPRs), and complement in synovitis development and cartilage degradation. Endogenous molecular products derived from cellular stress and extracellular matrix disruption can function as DAMPs to induce inflammatory responses and pro-catabolic events in vitro and promote synovitis and cartilage degradation in vivo via PRRs. Some of the DAMPs and PRRs display various capacities in driving synovitis and/or cartilage degradation in different models of animal studies. New findings reveal that the inflammatory complement cascade plays a key in the pathogenesis of OA. Crosstalk between joint tissues such as synovium and cartilage communicated at the cellular level within the innate immune inflammatory network is implicated to play an important role in OA progression. Further studies on how the innate immune inflammatory network impacts the OA disease process at different stages of progression will lead to the development of new therapeutic strategies.


Arthritis & Rheumatism | 2015

Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α.

Yun Wang; Xianling Zhao; Martin Lotz; Robert Terkeltaub; Ru Liu-Bryan

The etiology of chondrocyte mitochondrial dysfunction in osteoarthritis (OA) is not completely understood. OA chondrocytes are deficient in the metabolic biosensors active AMP‐activated protein kinase (AMPK) and sirtuin 1 (SIRT‐1), which modulate the mitochondrial biogenesis “master regulator” peroxisome proliferator–activated receptor γ coactivator 1α (PGC‐1α). Moreover, PGC‐1α critically mediates AMPK anticatabolic activity in chondrocytes. The aim of this study was to test the hypothesis that mitochondrial biogenesis is deficient in human OA chondrocytes and that this deficiency functionally increases chondrocyte procatabolic responses, which are reversed by activation of the AMPK/SIRT‐1/PGC‐1α pathway.

Collaboration


Dive into the Ru Liu-Bryan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Lotz

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

M. Husa

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Yun Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

David M. Rose

University of California

View shared research outputs
Top Co-Authors

Avatar

Maripat Corr

University of California

View shared research outputs
Top Co-Authors

Avatar

Monica Guma

University of California

View shared research outputs
Top Co-Authors

Avatar

Timothy M. Griffin

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Xianling Zhao

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge