Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rubel Chakravarty is active.

Publication


Featured researches published by Rubel Chakravarty.


Advanced Materials | 2014

Intrinsically Germanium-69-Labeled Iron Oxide Nanoparticles: Synthesis and In-Vivo Dual-Modality PET/MR Imaging

Rubel Chakravarty; Hector F. Valdovinos; Feng Chen; Christina M. Lewis; Paul A. Ellison; Haiming Luo; M. Elizabeth Meyerand; Robert J. Nickles; Weibo Cai

Intrinsically germanium-69-labeled super-paramagnetic iron oxide nanoparticles are synthesized via a newly developed, fast and highly specific chelator-free approach. The biodistribution pattern and the feasibility of (69) Ge-SPION@PEG for in vivo dual-modality positron emission tomography/magnetic resonance (PET/MR) imaging and lymph-node mapping are investigated, which represents the first example of the successful utilization of a (69) Ge-based agent for PET/MR imaging.


ACS Applied Materials & Interfaces | 2010

Nanoceria-PAN composite-based advanced sorbent material: a major step forward in the field of clinical-grade 68Ge/68Ga generator.

Rubel Chakravarty; Rakesh Shukla; Ramu Ram; Meera Venkatesh; Ashutosh Dash; A.K. Tyagi

The (68)Ge/(68)Ga generator has high potential for clinical positron emission tomography (PET) imaging. However, because of the unavailability of a suitable sorbent material, the commercially available (68)Ge/(68)Ga generators are not directly adaptable for the preparation of (68)Ga-labeled radiopharmaceuticals. In view of this, a new nanoceria-polyacrylonitrile (PAN) composite sorbent has been synthesized by decomposition of a cerium oxalate precursor to cerium oxide and its subsequent incorporation in PAN matrix for the development of a clinical grade (68)Ge/(68)Ga generator. The X-ray diffraction (XRD) studies and BET nitrogen adsorption technique revealed that nanocrystalline ceria had an average particle size of approximately 10 nm, surface area of 72 +/- 3 m(2)/g and an average pore size of 3.8 +/- 0.1 A. Investigation of the distribution ratio (K(d)) values for the prepared sorbent in 0.01 N HCl medium revealed the suitability of the sorbent for the quantitative retention of (68)Ge and efficient elution of clinical grade (68)Ga. A 370 MBq (10 mCi) (68)Ge/(68)Ga chromatographic generator was developed using this sorbent. (68)Ga could be regularly eluted from this generator with >80% elution yield. The eluted (68)Ga possess high radionuclidic purity (<1 x 10(-5)% of (68)Ge impurity), chemical purity (<0.1 ppm of Ce, Fe and Mn ions) and was amenable for the preparation of (68)Ga-labeled radiopharmaceuticals. The generator gave a consistent performance with respect to the elution yield and purity of (68)Ga over an extended period of 7 months.


Nuclear Medicine and Biology | 2011

Development of a nano-zirconia based 68Ge/68Ga generator for biomedical applications.

Rubel Chakravarty; Rakesh Shukla; Ramu Ram; A. K. Tyagi; Ashutosh Dash; Meera Venkatesh

INTRODUCTION Most of the commercially available (68)Ge/(68)Ga generator systems are not optimally designed for direct applications in a clinical context. We have developed a nano-zirconia based (68)Ge/(68)Ga generator system for accessing (68)Ga amenable for the preparation of radiopharmaceuticals. METHODS Nano-zirconia was synthesized by the in situ reaction of zirconyl chloride with ammonium hydroxide in alkaline medium. The physical characteristics of the material were studied by various analytical techniques. A 740 MBq (20 mCi) (68)Ge/(68)Ga generator was developed using this sorbent and its performance was evaluated for a period of 1 year. The suitability of (68)Ga for labeling biomolecules was ascertained by labeling DOTA-TATE with (68)Ga. RESULTS The material synthesized was nanocrystalline with average particle size of ~7 nm, pore-size of ~4 Å and a high surface area of 340±10 m(2) g(-1). (68)Ga could be regularly eluted from this generator in 0.01N HCl medium with an overall radiochemical yield >80% and with high radionuclidic (<10(-5)% of (68)Ge impurity) and chemical purity (<0.1 ppm of Zr, Fe and Mn ions). The compatibility of the product for preparation of (68)Ga-labeled DOTA-TATE under the optimized reaction conditions was found to be satisfactory in terms of high labeling yields (>99%). The generator gave a consistent performance with respect to the elution yield and purity of (68)Ga over a period of 1 year. CONCLUSIONS The feasibility of preparing an efficient (68)Ge/(68)Ga generator which can directly be used for biomedical applications has been demonstrated.


Molecular Pharmaceutics | 2014

44Sc: An attractive isotope for peptide-based PET imaging

Reinier Hernandez; Hector F. Valdovinos; Yunan Yang; Rubel Chakravarty; Hao Hong; Todd E. Barnhart; Weibo Cai

The overexpression of integrin αvβ3 has been linked to tumor aggressiveness and metastasis in several cancer types. Because of its high affinity, peptides containing the arginine–glycine–aspartic acid (RGD) motif have been proven valuable vectors for noninvasive imaging of integrin αvβ3 expression and for targeted radionuclide therapy. In this study, we aim to develop a 44Sc-labeled RGD-based peptide for in vivo positron emission tomography (PET) imaging of integrin αvβ3 expression in a preclinical cancer model. High quality 44Sc (t1/2, 3.97 h; β+ branching ratio, 94.3%) was produced inexpensively in a cyclotron, via proton irradiation of natural Ca metal targets, and separated by extraction chromatography. A dimeric cyclic-RGD peptide, (cRGD)2, was conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and radiolabeled with 44Sc in high yield (>90%) and specific activity (7.4 MBq/nmol). Serial PET imaging of mice bearing U87MG tumor xenografts showed elevated 44Sc-DOTA-(cRGD)2 uptake in the tumor tissue of 3.93 ± 1.19, 3.07 ± 1.17, and 3.00 ± 1.25 %ID/g at 0.5, 2, and 4 h postinjection, respectively (n = 3), which were validated by ex vivo biodistribution experiments. The integrin αvβ3 specificity of the tracer was corroborated, both in vitro and in vivo, by competitive cell binding and receptor blocking assays. These results parallel previously reported studies showing similar tumor targeting and pharmacokinetic profiles for dimeric cRGD peptides labeled with 64Cu or 68Ga. Our findings, together with the advantageous radionuclidic properties of 44Sc, capitalize on the relevance of this isotope as an attractive alternative isotope to more established radiometals for small molecule-based PET imaging, and as imaging surrogate of 47Sc in theranostic applications.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery

Rubel Chakravarty; Shreya Goel; Hao Hong; Feng Chen; Hector F. Valdovinos; Reinier Hernandez; Todd E. Barnhart; Weibo Cai

AIM Development of multifunctional and well-dispersed hollow mesoporous silica nanoparticles (HMSNs) for tumor vasculature targeted drug delivery and PET imaging. MATERIALS & METHODS Amine functionalized HMSNs (150-250 nm) were conjugated with a macrocyclic chelator, (S)-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triaceticacid (NOTA), PEGylated and loaded with antiangiogenesis drug, Sunitinib. Cyclo(Arg-Gly-Asp-D-Tyr-Lys) (cRGDyK) peptide was attached to the nanoconjugate and radiolabeled with (64)Cu for PET imaging. RESULTS (64)Cu-NOTA-HMSN-PEG-cRGDyK exhibited integrin-specific uptake both in vitro and in vivo. PET results indicated approximately 8% ID/g uptake of targeted nanoconjugates in U87MG tumors, which correlated well with ex vivo and histological analyses. Enhanced tumor-targeted delivery of sunitinib was also observed. CONCLUSION We successfully developed tumor vasculature targeted HMSNs for PET imaging and image-guided drug delivery.


Molecular Pharmaceutics | 2014

Positron Emission Tomography Image-Guided Drug Delivery:Current Status and Future Perspectives

Rubel Chakravarty; Hao Hong; Weibo Cai

Positron emission tomography (PET) is an important modality in the field of molecular imaging, which is gradually impacting patient care by providing safe, fast, and reliable techniques that help to alter the course of patient care by revealing invasive, de facto procedures to be unnecessary or rendering them obsolete. Also, PET provides a key connection between the molecular mechanisms involved in the pathophysiology of disease and the according targeted therapies. Recently, PET imaging is also gaining ground in the field of drug delivery. Current drug delivery research is focused on developing novel drug delivery systems with emphasis on precise targeting, accurate dose delivery, and minimal toxicity in order to achieve maximum therapeutic efficacy. At the intersection between PET imaging and controlled drug delivery, interest has grown in combining both these paradigms into clinically effective formulations. PET image-guided drug delivery has great potential to revolutionize patient care by in vivo assessment of drug biodistribution and accumulation at the target site and real-time monitoring of the therapeutic outcome. The expected end point of this approach is to provide fundamental support for the optimization of innovative diagnostic and therapeutic strategies that could contribute to emerging concepts in the field of “personalized medicine”. This review focuses on the recent developments in PET image-guided drug delivery and discusses intriguing opportunities for future development. The preclinical data reported to date are quite promising, and it is evident that such strategies in cancer management hold promise for clinically translatable advances that can positively impact the overall diagnostic and therapeutic processes and result in enhanced quality of life for cancer patients.


Bioconjugate Chemistry | 2014

Matching the decay half-life with the biological half-life: ImmunoPET imaging with (44)Sc-labeled cetuximab Fab fragment.

Rubel Chakravarty; Shreya Goel; Hector F. Valdovinos; Reinier Hernandez; Hao Hong; Robert J. Nickles; Weibo Cai

Scandium-44 (t1/2 = 3.9 h) is a relatively new radioisotope of potential interest for use in clinical positron emission tomography (PET). Herein, we report, for the first time, the room-temperature radiolabeling of proteins with 44Sc for in vivo PET imaging. For this purpose, the Fab fragment of Cetuximab, a monoclonal antibody that binds with high affinity to epidermal growth factor receptor (EGFR), was generated and conjugated with N-[(R)-2-amino-3-(para-isothiocyanato-phenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-N,N,N′,N″,N″-pentaacetic acid (CHX-A″-DTPA). The high purity of Cetuximab-Fab was confirmed by SDS-PAGE and mass spectrometry. The potential of the bioconjugate for PET imaging of EGFR expression in human glioblastoma (U87MG) tumor-bearing mice was investigated after 44Sc labeling. PET imaging revealed rapid tumor uptake (maximum uptake of ∼12% ID/g at 4 h postinjection) of 44Sc–CHX-A″-DTPA–Cetuximab-Fab with excellent tumor-to-background ratio, which might allow for same day PET imaging in future clinical studies. Immunofluorescence staining was conducted to correlate tracer uptake in the tumor and normal tissues with EGFR expression. This successful strategy for immunoPET imaging of EGFR expression using 44Sc–CHX-A″-DTPA–Cetuximab-Fab can make clinically translatable advances to select the right population of patients for EGFR-targeted therapy and also to monitor the therapeutic efficacy of anti-EGFR treatments.


Nuclear Medicine and Biology | 2013

Detailed evaluation on the effect of metal ion impurities on complexation of generator eluted 68Ga with different bifunctional chelators.

Rubel Chakravarty; Sudipta Chakraborty; Ashutosh Dash; M. R. A. Pillai

INTRODUCTION The introduction of (68)Ga-based positron emission tomography (PET) to clinical practice using (68)Ge/(68)Ga generator represents a developmental milestone in the field of molecular imaging. Herein, we report a systematic study on (68)Ga complexes with different bifunctional chelators (BFCs) and the effect of metal ion impurities on the radiochemical yields in order to identify the most suitable BFC to be used for the development of (68)Ga-based target specific radiopharmaceuticals. METHODS Radiolabeling of four commonly used BFCs namely p-isothiocyanato benzyl derivatives of diethylenetriaminepentacetic acid (DTPA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and 3,6,9,15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (PCTA) with (68)Ga was studied with respect to optimal radiolabeling conditions, effect of metal ion impurities on radiochemical yield, in vitro stability and in vivo clearance properties in biological system. RESULTS Out of the four BFCs studied, p-isothiocyanato benzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA-NCS) could be radiolabeled instantly with (68)Ga at room temperature with >98% yield, even in presence of up to 10 ppm of other metal ion impurities (such as Zn, Cu, Fe, Al, Sn and Ti ions). The (68)Ga-complex of NOTA-NCS demonstrated high in vitro stability even in the presence of 1000 times molar excess of metal ions (such as Fe, Cu, Zn and Ca ions). In contrast, other (68)Ga-labeled BFCs (DTPA-NCS, DOTA-NCS and PCTA-NCS) showed reduced radiochemical yields when incubated with the above concentration of metal ions. The biodistribution studies in Swiss mice revealed that (68)Ga-NOTA-NCS cleared rapidly through the kidneys with minimum retention in any major organ. CONCLUSIONS The simple and rapid approach for preparation of (68)Ga-radiopharmaceuticals using NOTA based bifunctional chelators would render (68)Ga-radiopharmaceutical chemistry more convenient with minimum interference from other metal ion impurities; and increase the scope of making (68)Ga based agents for PET imaging.


Cancer Biotherapy and Radiopharmaceuticals | 2012

Availability of yttrium-90 from strontium-90: a nuclear medicine perspective.

Rubel Chakravarty; Ashutosh Dash

Yttrium-90 (T(½) 64.1 hours, E(βmax)=2.28 MeV) is a pure β⁻ particle emitting radionuclide with well-established applications in targeted therapy. There are several advantages of ⁹⁰Y as a therapeutic radionuclide. It has a suitable physical half-life (∼64 hours) and decays to a stable daughter product ⁹⁰Zr by emission of high-energy β⁻ particles. Yttrium has a relatively simple chemistry and its suitability for forming complexes with a variety of chelating agents is well established. The ⁹⁰Sr/⁹⁰Y generator is an ideal source for the long-term continuous availability of no-carrier-added ⁹⁰Y suitable for the preparation of radiopharmaceuticals for radionuclide therapy. The parent radionuclide ⁹⁰Sr, which is a long-lived fission product, is available in large quantities from spent fuel. Several useful technologies have been developed for the preparation of ⁹⁰Sr/⁹⁰Y generators. There are several well-established radiopharmaceuticals based on monoclonal antibodies, peptides, and particulates labeled with ⁹⁰Y, that are in regular use for the treatment of some forms of primary cancers and arthritis. At present, there are no generators for the elution of ⁹⁰Y that can be set up in a hospital radiopharmacy. The radionuclide is procured from manufacturers and the radiopharmaceuticals are formulated on site. This article reviews the development of ⁹⁰Sr/⁹⁰Y generator and the development of ⁹⁰Y radiopharmaceuticals.


Nuclear Medicine and Biology | 2010

An electro-amalgamation approach to isolate no-carrier-added 177Lu from neutron irradiated Yb for biomedical applications

Rubel Chakravarty; Tapas Das; Ashutosh Dash; Meera Venkatesh

INTRODUCTION A novel two-step separation process for the production of no-carrier-added (NCA) (177)Lu from neutron irradiated Yb target through an electrochemical pathway employing mercury-pool cathode has been developed. METHODS A two-cycle electrolysis procedure was adopted for separation of (177)Lu from (177)Lu/Yb mixture in lithium citrate medium. The influence of different experimental parameters on the separation process was investigated and optimized for the quantitative deposition of Yb in presence of (177)Lu. The first electrolysis was performed for 50 min in the (177)Lu/Yb feed solution at pH 6 applying a potential of 8 V using platinum electrode as anode and mercury as the cathode. The second electrolysis was performed under the same conditions using fresh electrodes. The radionuclidic and chemical purity of (177)Lu was determined by using gamma ray spectrometry and atomic absorption spectrometry. The suitability of (177)Lu for biomedical applications was ascertained by labeling 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid D-Phe(1)-Tyr(3)-octreotate(DOTA-TATE) with (177)Lu. RESULTS This process could provide NCA (177)Lu with >99.99% radionuclidic purity and an overall separation yield of ∼99% was achieved within 3-4 h. The Hg content in the product was determined to be <1 ppm. Radiolabeling yield of >98% was obtained with DOTA-TATE under the optimized reaction conditions. CONCLUSIONS An efficient strategy for the separation of NCA (177)Lu, suitable for biomedical applications, has been developed.

Collaboration


Dive into the Rubel Chakravarty's collaboration.

Top Co-Authors

Avatar

Ashutosh Dash

Bhabha Atomic Research Centre

View shared research outputs
Top Co-Authors

Avatar

Sudipta Chakraborty

Bhabha Atomic Research Centre

View shared research outputs
Top Co-Authors

Avatar

Meera Venkatesh

Bhabha Atomic Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ramu Ram

Bhabha Atomic Research Centre

View shared research outputs
Top Co-Authors

Avatar

Haladhar Dev Sarma

Bhabha Atomic Research Centre

View shared research outputs
Top Co-Authors

Avatar

M. R. A. Pillai

Bhabha Atomic Research Centre

View shared research outputs
Top Co-Authors

Avatar

Weibo Cai

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Rakesh Shukla

Bhabha Atomic Research Centre

View shared research outputs
Top Co-Authors

Avatar

Usha Pandey

Bhabha Atomic Research Centre

View shared research outputs
Top Co-Authors

Avatar

A. K. Tyagi

Bhabha Atomic Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge