Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruben Coen-Cagli is active.

Publication


Featured researches published by Ruben Coen-Cagli.


Annual Review of Neuroscience | 2016

Correlations and Neuronal Population Information

Adam Kohn; Ruben Coen-Cagli; Ingmar Kanitscheider; Alexandre Pouget

Brain function involves the activity of neuronal populations. Much recent effort has been devoted to measuring the activity of neuronal populations in different parts of the brain under various experimental conditions. Population activity patterns contain rich structure, yet many studies have focused on measuring pairwise relationships between members of a larger population-termed noise correlations. Here we review recent progress in understanding how these correlations affect population information, how information should be quantified, and what mechanisms may give rise to correlations. As population coding theory has improved, it has made clear that some forms of correlation are more important for information than others. We argue that this is a critical lesson for those interested in neuronal population responses more generally: Descriptions of population responses should be motivated by and linked to well-specified function. Within this context, we offer suggestions of where current theoretical frameworks fall short.


PLOS Computational Biology | 2012

Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics

Ruben Coen-Cagli; Peter Dayan; Odelia Schwartz

Spatial context in images induces perceptual phenomena associated with salience and modulates the responses of neurons in primary visual cortex (V1). However, the computational and ecological principles underlying contextual effects are incompletely understood. We introduce a model of natural images that includes grouping and segmentation of neighboring features based on their joint statistics, and we interpret the firing rates of V1 neurons as performing optimal recognition in this model. We show that this leads to a substantial generalization of divisive normalization, a computation that is ubiquitous in many neural areas and systems. A main novelty in our model is that the influence of the context on a target stimulus is determined by their degree of statistical dependence. We optimized the parameters of the model on natural image patches, and then simulated neural and perceptual responses on stimuli used in classical experiments. The model reproduces some rich and complex response patterns observed in V1, such as the contrast dependence, orientation tuning and spatial asymmetry of surround suppression, while also allowing for surround facilitation under conditions of weak stimulation. It also mimics the perceptual salience produced by simple displays, and leads to readily testable predictions. Our results provide a principled account of orientation-based contextual modulation in early vision and its sensitivity to the homogeneity and spatial arrangement of inputs, and lends statistical support to the theory that V1 computes visual salience.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Origin of information-limiting noise correlations

Ingmar Kanitscheider; Ruben Coen-Cagli; Alexandre Pouget

Significance Populations of neurons encode information in activity patterns that vary across repeated presentation of the same input and are correlated across neurons (noise correlations). Such noise correlations can limit information about sensory stimuli and therefore limit behavioral performance in tasks such as discrimination between two similar stimuli. Therefore it is important to understand where and how noise correlations are generated. Most previous accounts focused on sources of variability inside the brain. Here we focus instead on noise that is injected at the sensory periphery and propagated to the cortex: We show that this simple framework accounts for many known properties of noise correlations and explains behavioral performance in discrimination tasks, without the need to assume further sources of information loss. The ability to discriminate between similar sensory stimuli relies on the amount of information encoded in sensory neuronal populations. Such information can be substantially reduced by correlated trial-to-trial variability. Noise correlations have been measured across a wide range of areas in the brain, but their origin is still far from clear. Here we show analytically and with simulations that optimal computation on inputs with limited information creates patterns of noise correlations that account for a broad range of experimental observations while at same time causing information to saturate in large neural populations. With the example of a network of V1 neurons extracting orientation from a noisy image, we illustrate to our knowledge the first generative model of noise correlations that is consistent both with neurophysiology and with behavioral thresholds, without invoking suboptimal encoding or decoding or internal sources of variability such as stochastic network dynamics or cortical state fluctuations. We further show that when information is limited at the input, both suboptimal connectivity and internal fluctuations could similarly reduce the asymptotic information, but they have qualitatively different effects on correlations leading to specific experimental predictions. Our study indicates that noise at the sensory periphery could have a major effect on cortical representations in widely studied discrimination tasks. It also provides an analytical framework to understand the functional relevance of different sources of experimentally measured correlations.


Vision Research | 2009

Visuomotor Characterization of Eye Movements in a Drawing Task

Ruben Coen-Cagli; Paolo Coraggio; Paolo Napoletano; Odelia Schwartz; Mario Ferraro; Giuseppe Boccignone

Understanding visuomotor coordination requires the study of tasks that engage mechanisms for the integration of visual and motor information; in this paper we choose a paradigmatic yet little studied example of such a task, namely realistic drawing. On the one hand, our data indicate that the motor task has little influence on which regions of the image are overall most likely to be fixated: salient features are fixated most often. Viceversa, the effect of motor constraints is revealed in the temporal aspect of the scanpaths: (1) subjects direct their gaze to an object mostly when they are acting upon (drawing) it; and (2) in support of graphically continuous hand movements, scanpaths resemble edge-following patterns along image contours. For a better understanding of such properties, a computational model is proposed in the form of a novel kind of Dynamic Bayesian Network, and simulation results are compared with human eye-hand data.


Nature Neuroscience | 2015

Flexible Gating of Contextual Influences in Natural Vision

Ruben Coen-Cagli; Adam Kohn; Odelia Schwartz

Identical sensory inputs can be perceived as markedly different when embedded in distinct contexts. Neural responses to simple stimuli are also modulated by context, but the contribution of this modulation to the processing of natural sensory input is unclear. We measured surround suppression, a quintessential contextual influence, in macaque primary visual cortex with natural images. We found that suppression strength varied substantially for different images. This variability was not well explained by existing descriptions of surround suppression, but it was predicted by Bayesian inference about statistical dependencies in images. In this framework, surround suppression was flexible: it was recruited when the image was inferred to contain redundancies and substantially reduced in strength otherwise. Thus, our results reveal a gating of a basic, widespread cortical computation by inference about the statistics of natural input.


Journal of Vision | 2013

Visual attention and flexible normalization pools

Odelia Schwartz; Ruben Coen-Cagli

Attention to a spatial location or feature in a visual scene can modulate the responses of cortical neurons and affect perceptual biases in illusions. We add attention to a cortical model of spatial context based on a well-founded account of natural scene statistics. The cortical model amounts to a generalized form of divisive normalization, in which the surround is in the normalization pool of the center target only if they are considered statistically dependent. Here we propose that attention influences this computation by accentuating the neural unit activations at the attended location, and that the amount of attentional influence of the surround on the center thus depends on whether center and surround are deemed in the same normalization pool. The resulting form of model extends a recent divisive normalization model of attention (Reynolds & Heeger, 2009). We simulate cortical surround orientation experiments with attention and show that the flexible model is suitable for capturing additional data and makes nontrivial testable predictions.


Journal of Vision | 2016

Specificity and timescales of cortical adaptation as inferences about natural movie statistics

Michoel Snow; Ruben Coen-Cagli; Odelia Schwartz

Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation.


Journal of Vision | 2013

The impact on midlevel vision of statistically optimal divisive normalization in V1.

Ruben Coen-Cagli; Odelia Schwartz

The first two areas of the primate visual cortex (V1, V2) provide a paradigmatic example of hierarchical computation in the brain. However, neither the functional properties of V2 nor the interactions between the two areas are well understood. One key aspect is that the statistics of the inputs received by V2 depend on the nonlinear response properties of V1. Here, we focused on divisive normalization, a canonical nonlinear computation that is observed in many neural areas and modalities. We simulated V1 responses with (and without) different forms of surround normalization derived from statistical models of natural scenes, including canonical normalization and a statistically optimal extension that accounted for image nonhomogeneities. The statistics of the V1 population responses differed markedly across models. We then addressed how V2 receptive fields pool the responses of V1 model units with different tuning. We assumed this is achieved by learning without supervision a linear representation that removes correlations, which could be accomplished with principal component analysis. This approach revealed V2-like feature selectivity when we used the optimal normalization and, to a lesser extent, the canonical one but not in the absence of both. We compared the resulting two-stage models on two perceptual tasks; while models encompassing V1 surround normalization performed better at object recognition, only statistically optimal normalization provided systematic advantages in a task more closely matched to midlevel vision, namely figure/ground judgment. Our results suggest that experiments probing midlevel areas might benefit from using stimuli designed to engage the computations that characterize V1 optimality.


PLOS Computational Biology | 2015

Measuring Fisher information accurately in correlated neural populations.

Ingmar Kanitscheider; Ruben Coen-Cagli; Adam Kohn; Alexandre Pouget

Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively.


F1000Research | 2017

Adaptation in the visual cortex: a case for probing neuronal populations with natural stimuli

Odelia Schwartz; Michoel Snow; Ruben Coen-Cagli

The perception of, and neural responses to, sensory stimuli in the present are influenced by what has been observed in the past—a phenomenon known as adaptation. We focus on adaptation in visual cortical neurons as a paradigmatic example. We review recent work that represents two shifts in the way we study adaptation, namely (i) going beyond single neurons to study adaptation in populations of neurons and (ii) going beyond simple stimuli to study adaptation to natural stimuli. We suggest that efforts in these two directions, through a closer integration of experimental and modeling approaches, will enable a more complete understanding of cortical processing in natural environments.

Collaboration


Dive into the Ruben Coen-Cagli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingmar Kanitscheider

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Adam Kohn

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Michoel Snow

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Florian Roehrbein

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge