Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rubén López-Mondéjar is active.

Publication


Featured researches published by Rubén López-Mondéjar.


Scientific Reports | 2016

Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems

Rubén López-Mondéjar; Daniela Zühlke; Dörte Becher; Katharina Riedel; Petr Baldrian

Evidence shows that bacteria contribute actively to the decomposition of cellulose and hemicellulose in forest soil; however, their role in this process is still unclear. Here we performed the screening and identification of bacteria showing potential cellulolytic activity from litter and organic soil of a temperate oak forest. The genomes of three cellulolytic isolates previously described as abundant in this ecosystem were sequenced and their proteomes were characterized during the growth on plant biomass and on microcrystalline cellulose. Pedobacter and Mucilaginibacter showed complex enzymatic systems containing highly diverse carbohydrate-active enzymes for the degradation of cellulose and hemicellulose, which were functionally redundant for endoglucanases, β-glucosidases, endoxylanases, β-xylosidases, mannosidases and carbohydrate-binding modules. Luteibacter did not express any glycosyl hydrolases traditionally recognized as cellulases. Instead, cellulose decomposition was likely performed by an expressed GH23 family protein containing a cellulose-binding domain. Interestingly, the presence of plant lignocellulose as well as crystalline cellulose both trigger the production of a wide set of hydrolytic proteins including cellulases, hemicellulases and other glycosyl hydrolases. Our findings highlight the extensive and unexplored structural diversity of enzymatic systems in cellulolytic soil bacteria and indicate the roles of multiple abundant bacterial taxa in the decomposition of cellulose and other plant polysaccharides.


Applied Microbiology and Biotechnology | 2014

Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods.

Petr Baldrian; Rubén López-Mondéjar

Molecular methods for the analysis of biomolecules have undergone rapid technological development in the last decade. The advent of next-generation sequencing methods and improvements in instrumental resolution enabled the analysis of complex transcriptome, proteome and metabolome data, as well as a detailed annotation of microbial genomes. The mechanisms of decomposition by model fungi have been described in unprecedented detail by the combination of genome sequencing, transcriptomics and proteomics. The increasing number of available genomes for fungi and bacteria shows that the genetic potential for decomposition of organic matter is widespread among taxonomically diverse microbial taxa, while expression studies document the importance of the regulation of expression in decomposition efficiency. Importantly, high-throughput methods of nucleic acid analysis used for the analysis of metagenomes and metatranscriptomes indicate the high diversity of decomposer communities in natural habitats and their taxonomic composition. Today, the metaproteomics of natural habitats is of interest. In combination with advanced analytical techniques to explore the products of decomposition and the accumulation of information on the genomes of environmentally relevant microorganisms, advanced methods in microbial ecophysiology should increase our understanding of the complex processes of organic matter transformation.


Microbiology and Molecular Biology Reviews | 2017

Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change

Salvador Lladó; Rubén López-Mondéjar; Petr Baldrian

SUMMARY The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously.


Global Change Biology | 2017

Differential sensitivity of total and active soil microbial communities to drought and forest management

Felipe Bastida; Irene F. Torres; M. Andrés-Abellán; Petr Baldrian; Rubén López-Mondéjar; Tomáš Větrovský; Hans H. Richnow; Robert Starke; Sara Ondoño; Carlos García; Francisco R. López-Serrano; Nico Jehmlich

Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning-that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 6 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community-based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought-plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial community and climate change.


The ISME Journal | 2018

Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling

Rubén López-Mondéjar; Vendula Brabcová; Martina Štursová; Anna Davidová; Jan Jansa; Tomáš Cajthaml; Petr Baldrian

Forest soils represent important terrestrial carbon (C) pools where C is primarily fixed in the plant-derived biomass but it flows further through the biomass of fungi and bacteria before it is lost from the ecosystem as CO2 or immobilized in recalcitrant organic matter. Microorganisms are the main drivers of C flow in forests and play critical roles in the C balance through the decomposition of dead biomass of different origins. Here, we track the path of C that enters forest soil by following respiration, microbial biomass production, and C accumulation by individual microbial taxa in soil microcosms upon the addition of 13C-labeled biomass of plant, fungal, and bacterial origin. We demonstrate that both fungi and bacteria are involved in the assimilation and mineralization of C from the major complex sources existing in soil. Decomposer fungi are, however, better suited to utilize plant biomass compounds, whereas the ability to utilize fungal and bacterial biomass is more frequent among bacteria. Due to the ability of microorganisms to recycle microbial biomass, we suggest that the decomposer food web in forest soil displays a network structure with loops between and within individual pools. These results question the present paradigms describing food webs as hierarchical structures with unidirectional flow of C and assumptions about the dominance of fungi in the decomposition of complex organic matter.


Archive | 2017

Exploring the Plant Microbiome Through Multi-omics Approaches

Rubén López-Mondéjar; Martin Kostovčík; Salvador Lladó; Lorena Carro; Paula García-Fraile

Like many other high organisms, plants harbour a microbiome. The plant microbiome can be defined as the communities of microbial symbionts (microbiota) plus their collective genetic material, which determines the properties of the interactions between the microbes themselves and with their host.


Frontiers in Microbiology | 2018

Discovery of Phloeophagus Beetles as a Source of Pseudomonas Strains That Produce Potentially New Bioactive Substances and Description of Pseudomonas bohemica sp. nov.

Zaki Saati-Santamaría; Rubén López-Mondéjar; Alejandro Jiménez-Gómez; Alexandra Díez-Méndez; Tomáš Větrovský; José M. Igual; Encarna Velázquez; Miroslav Kolarik; Raúl Rivas; Paula García-Fraile

Antimicrobial resistance is a worldwide problem that threatens the effectiveness of treatments for microbial infection. Consequently, it is essential to study unexplored niches that can serve for the isolation of new microbial strains able to produce antimicrobial compounds to develop new drugs. Bark beetles live in phloem of host trees and establish symbioses with microorganisms that provide them with nutrients. In addition, some of their associated bacteria play a role in the beetle protection by producing substances that inhibit antagonists. In this study the capacity of several bacterial strains, isolated from the bark beetles Ips acuminatus, Pityophthorus pityographus Cryphalus piceae, and Pityogenes bidentatus, to produce antimicrobial compounds was analyzed. Several isolates exhibited the capacity to inhibit Gram-positive and Gram-negative bacteria, as well as fungi. The genome sequence analysis of three Pseudomonas isolates predicted the presence of several gene clusters implicated in the production of already described antimicrobials and moreover, the low similarity of some of these clusters with those previously described, suggests that they encode new undescribed substances, which may be useful for developing new antimicrobial agents. Moreover, these bacteria appear to have genetic machinery for producing antitumoral and antiviral substances. Finally, the strain IA19T showed to represent a new species of the genus Pseudomonas. The 16S rRNA gene sequence analysis showed that its most closely related species include Pseudomonas lutea, Pseudomonas graminis, Pseudomonas abietaniphila and Pseudomonas alkylphenolica, with 98.6, 98.5 98.4, and 98.4% identity, respectively. MLSA of the housekeeping genes gyrB, rpoB, and rpoD confirmed that strain IA19T clearly separates from its closest related species. Average nucleotide identity between strains IA19T and P. abietaniphila ATCC 700689T, P. graminis DSM 11363T, P. alkylphenolica KL28T and P. lutea DSM 17257T were 85.3, 80.2, 79.0, and 72.1%, respectively. Growth occurs at 4-37°C and pH 6.5-8. Optimal growth occurs at 28°C, pH 7–8 and up to 2.5% NaCl. Respiratory ubiquinones are Q9 (97%) and Q8 (3%). C16:0 and in summed feature 3 are the main fatty acids. Based on genotypic, phenotypic and chemotaxonomic characteristics, the description of Pseudomonas bohemica sp. nov. has been proposed. The type strain is IA19T (=CECT 9403T = LMG 30182T).


Applied Microbiology and Biotechnology | 2018

Drivers of microbial community structure in forest soils

Salvador Lladó; Rubén López-Mondéjar; Petr Baldrian

Forests are essential biomes for global biogeochemical cycles, and belowground microorganisms have a key role in providing relevant ecosystem services. To predict the effects of environmental changes on these ecosystem services requires a comprehensive understanding of how biotic and abiotic factors drive the composition of microbial communities in soil. However, microorganisms are not homogeneously distributed in complex environments such as soil, with different features affecting microbes at different extent depending on the niche they occupy. Indeed, this spatial heterogeneity hampers the extrapolation of microbial diversity study results from particular habitats to the ecosystem level, even if the resolution of the more recent studies has increased significantly after the standardization of high-throughput sequencing techniques. The present work intends to give a comprehensive view of the knowledge accumulated until date defining the more important drivers determining the structure of forest soil microbial communities from fine to continental scales.


Soil Biology & Biochemistry | 2015

The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics

Rubén López-Mondéjar; Jana Voříšková; Tomáš Větrovský; Petr Baldrian


Biotechnology for Biofuels | 2016

Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199

Rubén López-Mondéjar; Daniela Zühlke; Tomáš Větrovský; Dörte Becher; Katharina Riedel; Petr Baldrian

Collaboration


Dive into the Rubén López-Mondéjar's collaboration.

Top Co-Authors

Avatar

Petr Baldrian

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Tomáš Větrovský

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos García

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Felipe Bastida

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Irene F. Torres

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dörte Becher

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge