Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruchi Jain is active.

Publication


Featured researches published by Ruchi Jain.


PLOS ONE | 2008

Enhanced and enduring protection against tuberculosis by recombinant BCG-Ag85C and its association with modulation of cytokine profile in lung.

Ruchi Jain; Bappaditya Dey; Neeraj Dhar; Vivek Rao; Ramandeep Singh; Umesh Dutt Gupta; Vishwa Mohan Katoch; V. D. Ramanathan; Anil K. Tyagi

Background The variable efficacy (0–80%) of Mycobacterium bovis Bacille Calmette Guréin (BCG) vaccine against adult tuberculosis (TB) necessitates development of alternative vaccine candidates. Development of recombinant BCG (rBCG) over-expressing promising immunodominant antigens of M. tuberculosis represents one of the potential approaches for the development of vaccines against TB. Methods/Principal Findings A recombinant strain of BCG - rBCG85C, over expressing the antigen 85C, a secretory immuno-dominant protein of M. tuberculosis, was evaluated for its protective efficacy in guinea pigs against M. tuberculosis challenge by aerosol route. Immunization with rBCG85C resulted in a substantial reduction in the lung (1.87 log10, p<0.01) and spleen (2.36 log10, p<0.001) bacillary load with a commensurate reduction in pathological damage, when compared to the animals immunized with the parent BCG strain at 10 weeks post-infection. rBCG85C continued to provide superior protection over BCG even when post-challenge period was prolonged to 16 weeks. The cytokine profile of pulmonary granulomas revealed that the superior protection imparted by rBCG85C was associated with the reduced levels of pro-inflammatory cytokines - interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, moderate levels of anti-inflammatory cytokine - transforming growth factor (TGF)-β along with up-regulation of inducible nitric oxide synthase (iNOS). In addition, the rBCG85C vaccine induced modulation of the cytokine levels was found to be associated with reduced fibrosis and antigen load accompanied by the restoration of normal lung architecture. Conclusions/Significance These results clearly indicate the superiority of rBCG85C over BCG as a promising prophylactic vaccine against TB. The enduring protection observed in this study gives enough reason to postulate that if an open-ended study is carried out with low dose of infection, rBCG85C vaccine in all likelihood would show enhanced survival of guinea pigs.


PLOS ONE | 2011

A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis.

Bappaditya Dey; Ruchi Jain; Umesh D. Gupta; Vishwa Mohan Katoch; V. D. Ramanathan; Anil K. Tyagi

Background In spite of a consistent protection against tuberculosis (TB) in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG) fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB. Methods/Principal Findings In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin- a key latency antigen of M. tuberculosis to boost the BCG induced immunity. ‘BCG prime – DNA boost’ regimen (B/D) confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log10 and 1.96 log10 fewer bacilli in lungs and spleen, respectively; p<0.01). In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3+) simultaneously producing interferon (IFN)γ, tumor necrosis factor (TNF)α and interleukin (IL)2. Conclusions/Significance These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.


Current Microbiology | 2006

Xanthan Gum: An Economical Partial Substitute for Agar in Microbial Culture Media

Shashi B. Babbar; Ruchi Jain

Xanthan gum, microbial desiccation-resistant polysaccharide prepared commercially by aerobic submerged fermentation from Xanthomonas campestris, has been successfully used alone and in combination with agar for microbial culture media. As illustrative examples, eight bacteria and eight fungi were grown on media solidified with either agar (A, 1.5%), xanthan gum (X, 1%), or combinations of both (0.9% X + 0.1% A, 0.8% X + 0.2% A, 0.7% X + 0.3% A, 0.6% X + 0.4% A). All fungi and bacteria exhibited normal growth and differentiation in all these treatments. Rather, growth of most of the fungi was better on xanthan (alone) and xanthan + agar media than agar medium. As the media gelled with xanthan gum alone flow, it was not possible to incubate Petri plates in inverted position. Moreover, because of the softness, streaking of bacteria was difficult on such media. However, these problems could be overcome by partially replacing xanthan gum with 0.3% agar. Bacterial enumeration studies carried out for Serratia sp. and Pseudomonas sp. by serial dilution and pour-plate method on agar (1.5%), 0.7%/0.6% X + 0.3%/0.4% A yielded similar counts. Selective media, succinate medium for Pseudomonas sp., and MacConkey broth medium for Escherichia coli gelled with 0.7%/0.6% X + 0.3%/0.4% A did not support growth of other bacteria when inoculated along with the above-mentioned bacteria. Likewise, differential medium, CRMA (Congo red mannitol agar) gelled with xanthan–agar combination could differentiate between Agrobacterium tumefaciens and Rhizobium sp.


Letters in Applied Microbiology | 2005

Guar gum: a cheap substitute for agar in microbial culture media.

Ruchi Jain; V. Anjaiah; Shashi B. Babbar

Aims:  To determine the possibility of using guar gum, a colloidal polysaccharide, as a cheap alternative to agar for gelling microbial culture media.


Vaccine | 2009

Boosting with a DNA vaccine expressing ESAT-6 (DNAE6) obliterates the protection imparted by recombinant BCG (rBCGE6) against aerosol Mycobacterium tuberculosis infection in guinea pigs

Bappaditya Dey; Ruchi Jain; Aparna Khera; Vivek Rao; Neeraj Dhar; Umesh D. Gupta; Vishwa Mohan Katoch; V. D. Ramanathan; Anil K. Tyagi

Owing to its highly immunodominant nature and ability to induce long-lived memory immunity, ESAT-6, a prominent antigen of Mycobacterium tuberculosis, has been employed in several approaches to develop tuberculosis vaccines. Here, for the first time, we combined ESAT-6 based recombinant BCG (rBCG) and DNA vaccine (DNAE6) in a prime boost approach. Interestingly, in spite of inducing an enhanced antigen specific IFN-gamma response in mice, a DNAE6 booster completely obliterated the protection imparted by rBCG against tuberculosis in guinea pigs. Analysis of immunopathology and cytokine responses suggests involvement of an exaggerated immunity behind the lack of protection imparted by this regimen.


Vaccine | 2011

Over-expression of superoxide dismutase obliterates the protective effect of BCG against tuberculosis by modulating innate and adaptive immune responses

Ruchi Jain; Bappaditya Dey; Aparna Khera; Priyadarshani Srivastav; Umesh D. Gupta; Vishwa Mohan Katoch; V. D. Ramanathan; Anil K. Tyagi

An efficient global control of tuberculosis requires development of alternative vaccination strategies that can enhance the efficacy of existing BCG vaccine. In this study, we evaluated the protective efficacy of a recombinant BCG (rBCG) vaccine over-expressing iron-cofactored superoxide dismutase (SOD-A), one of the prominent oxidative stress response proteins of Mycobacterium tuberculosis. Contrary to our expectations, over-expression of SOD-A resulted in the abrogation of BCGs ability to confer protection in guinea pig as well as in murine model. Analysis of immune responses revealed that over-expression of SOD-A by rBCG has pleiotropic effects on innate and adaptive immune responses. Macrophages infected in vitro with rBCG exhibited a marked reduction in apoptosis and microbicidal potential. In addition, rBCG vaccination of mice resulted in a reduced IFNγ and increased IL10 production when compared with the BCG vaccination. Further, we show that rBCG vaccination failed to generate an effective multi-functional CD4 T cell response. Altogether, our findings suggest that over-expression of SOD-A in BCG enhances the immuno-suppressive properties of BCG, characterized by skewing of immune responses towards Th2 type, an inefficient multi-functional T cell response and reduced apoptosis and microbicidal potential of macrophages leading to abolishment of BCGs protective efficacy.


PLOS ONE | 2011

Latency Antigen α-Crystallin Based Vaccination Imparts a Robust Protection against TB by Modulating the Dynamics of Pulmonary Cytokines

Bappaditya Dey; Ruchi Jain; Aparna Khera; Umesh D. Gupta; Vishwa Mohan Katoch; V. D. Ramanathan; Anil K. Tyagi

Background Efficient control of tuberculosis (TB) requires development of strategies that can enhance efficacy of the existing vaccine Mycobacterium bovis Bacille Calmette Guerin (BCG). To date only a few studies have explored the potential of latency-associated antigens to augment the immunogenicity of BCG. Methods/Principal Findings We evaluated the protective efficacy of a heterologous prime boost approach based on recombinant BCG and DNA vaccines targeting α-crystallin, a prominent latency antigen. We show that “rBCG prime - DNA boost” strategy (R/D) confers a markedly superior protection along with reduced pathology in comparison to BCG vaccination in guinea pigs (565 fold and 45 fold reduced CFU in lungs and spleen, respectively, in comparison to BCG vaccination). In addition, R/D regimen also confers enhanced protection in mice. Our results in guinea pig model show a distinct association of enhanced protection with an increased level of interleukin (IL)12 and a simultaneous increase in immuno-regulatory cytokines such as transforming growth factor (TGF)β and IL10 in lungs. The T cell effector functions, which could not be measured in guinea pigs due to technical limitations, were characterized in mice by multi-parameter flow cytometry. We show that R/D regimen elicits a heightened multi-functional CD4 Th1 cell response leading to enhanced protection. Conclusions/Significance These results clearly indicate the superiority of α-crystallin based R/D regimen over BCG. Our observations from guinea pig studies indicate a crucial role of IL12, IL10 and TGFβ in vaccine-induced protection. Further, characterization of T cell responses in mice demonstrates that protection against TB is predictable by the frequency of CD4 T cells simultaneously producing interferon (IFN)γ, tumor necrosis factor (TNF)α and IL2. We anticipate that this study will not only contribute toward the development of a superior alternative to BCG, but will also stimulate designing of TB vaccines based on latency antigens.


Plant Cell Reports | 2006

Xanthan gum: an economical substitute for agar in plant tissue culture media

Ruchi Jain; Shashi B. Babbar

Xanthan gum, a microbial desiccation-resistant polysaccharide prepared commercially by aerobic submerged fermentation from Xanthomonas campestris, has been successfully used as a solidifying agent for plant tissue culture media. Its suitability as a substitute to agar was demonstrated for in vitro seed germination, caulogenesis and rhizogenesis of Albizzia lebbeck, androgenesis in anther cultures of Datura innoxia, and somatic embryogenesis in callus cultures of Calliandra tweedii. Culture media used for eliciting these morphogenic responses were gelled with either 1% xanthan gum or 0.9% agar. Xanthan gum, like agar, supported all these responses.


Scientific Reports | 2013

Adjunctive immunotherapy with α-crystallin based DNA vaccination reduces Tuberculosis chemotherapy period in chronically infected mice

Priyanka Chauhan; Ruchi Jain; Bappaditya Dey; Anil K. Tyagi

By employing modified Cornell model, we have evaluated the potential of adjunctive immunotherapy with DNA vaccines to shorten the tuberculosis chemotherapy period and reduce disease reactivation. We demonstrate that α-crystallin based DNA vaccine (DNAacr) significantly reduced the chemotherapy period from 12 weeks to 8 weeks when compared with the chemotherapy alone. Immunotherapy with SodA based DNA vaccine (DNAsod) reduced the pulmonary bacilli only as much as DNAvec. Both DNAacr and DNAsod, although significantly delayed the reactivation in comparison to the chemotherapy alone, this delay was associated with the immunostimulatory sequences present in the vector backbone and was not antigen specific. Both DNA vaccines resulted in the production of significantly higher number of TEM cells than the chemotherapy alone, however, only in the case of DNAsod, this enhancement was significant over the DNAvec treatment. Overall, our findings emphasize the immunotherapeutic potential of DNAacr in shortening the duration of TB chemotherapy.


BMC Genomics | 2012

Development of the first oligonucleotide microarray for global gene expression profiling in guinea pigs: defining the transcription signature of infectious diseases

Ruchi Jain; Bappaditya Dey; Anil K. Tyagi

BackgroundThe Guinea pig (Cavia porcellus) is one of the most extensively used animal models to study infectious diseases. However, despite its tremendous contribution towards understanding the establishment, progression and control of a number of diseases in general and tuberculosis in particular, the lack of fully annotated guinea pig genome sequence as well as appropriate molecular reagents has severely hampered detailed genetic and immunological analysis in this animal model.ResultsBy employing the cross-species hybridization technique, we have developed an oligonucleotide microarray with 44,000 features assembled from different mammalian species, which to the best of our knowledge is the first attempt to employ microarray to study the global gene expression profile in guinea pigs. To validate and demonstrate the merit of this microarray, we have studied, as an example, the expression profile of guinea pig lungs during the advanced phase of M. tuberculosis infection. A significant upregulation of 1344 genes and a marked down regulation of 1856 genes in the lungs identified a disease signature of pulmonary tuberculosis infection.ConclusionWe report the development of first comprehensive microarray for studying the global gene expression profile in guinea pigs and validation of its usefulness with tuberculosis as a case study. An important gap in the area of infectious diseases has been addressed and a valuable molecular tool is provided to optimally harness the potential of guinea pig model to develop better vaccines and therapies against human diseases.

Collaboration


Dive into the Ruchi Jain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. D. Ramanathan

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Vishwa Mohan Katoch

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Umesh D. Gupta

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge