Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rudi Loesel is active.

Publication


Featured researches published by Rudi Loesel.


Proceedings of the Royal Society of London / Series B, Biological sciences | 2006

Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage

Nicholas J. Strausfeld; Camilla Mok Strausfeld; Rudi Loesel; David M. Rowell; Sally Stowe

Neuroanatomical studies have demonstrated that the architecture and organization among neuropils are highly conserved within any order of arthropods. The shapes of nerve cells and their neuropilar arrangements provide robust characters for phylogenetic analyses. Such analyses so far have agreed with molecular phylogenies in demonstrating that entomostracans+malacostracans belong to a clade (Tetraconata) that includes the hexapods. However, relationships among what are considered to be paraphyletic groups or among the stem arthropods have not yet been satisfactorily resolved. The present parsimony analyses of independent neuroarchitectural characters from 27 arthropods and lobopods demonstrate relationships that are congruent with phylogenies derived from molecular studies, except for the status of the Onychophora. The present account describes the brain of the onychophoran Euperipatoides rowelli, demonstrating that the structure and arrangements of its neurons, cerebral neuropils and sensory centres are distinct from arrangements in the brains of mandibulates. Neuroanatomical evidence suggests that the organization of the onychophoran brain is similar to that of the brains of chelicerates.


The Journal of Comparative Neurology | 2003

Conserved and Convergent Organization in the Optic Lobes of Insects and Isopods, with Reference to Other Crustacean Taxa

Irina Sinakevitch; John K. Douglass; Gerhard Scholtz; Rudi Loesel; Nicholas J. Strausfeld

The shared organization of three optic lobe neuropils—the lamina, medulla, and lobula—linked by chiasmata has been used to support arguments that insects and malacostracans are sister groups. However, in certain insects, the lobula is accompanied by a tectum‐like fourth neuropil, the lobula plate, characterized by wide‐field tangential neurons and linked to the medulla by uncrossed axons. The identification of a lobula plate in an isopod crustacean raises the question of whether the lobula plate of insects and isopods evolved convergently or are derived from a common ancestor. This question is here investigated by comparisons of insect and crustacean optic lobes. The basal branchiopod crustacean Triops has only two visual neuropils and no optic chiasma. This finding contrasts with the phyllocarid Nebalia pugettensis, a basal malacostracan whose lamina is linked by a chiasma to a medulla that is linked by a second chiasma to a retinotopic outswelling of the lateral protocerebrum, called the protolobula. In Nebalia, uncrossed axons from the medulla supply a minute fourth optic neuropil. Eumalacostracan crustaceans also possess two deep neuropils, one receiving crossed axons, the other uncrossed axons. However, in primitive insects, there is no separate fourth optic neuropil. Malacostracans and insects also differ in that the insect medulla comprises two nested neuropils separated by a layer of axons, called the Cuccati bundle. Comparisons suggest that neuroarchitectures of the lamina and medulla distal to the Cuccati bundle are equivalent to the eumalacostracan lamina and entire medulla. The occurrence of a second optic chiasma and protolobula are suggested to be synapomorphic for a malacostracan/insect clade. J. Comp. Neurol. 467:150–172, 2003.


Acta Biologica Hungarica | 2008

FMRFamide-like immunoreactivity in the central nervous system of the cephalopod mollusc, Idiosepius notoides.

Tim Wollesen; Rudi Loesel; Andreas Wanninger

For more than a century, cephalopod molluscs have been the subject of extensive studies with respect to their complex neuroanatomy and behavior. In comparison to gastropod molluscs surprisingly little work has been carried out on the characterization of neurons in the central nervous system (CNS) of cephalopods with respect to their neurotransmitter phenotypes. This study presents preliminary results on the distribution of FMRFamide-like immunoreactive neurons within the CNS of the pygmy squid Idiosepius notoides. Its gross neuroanatomy resembles that of other cephalopods. FMRFamide-like immunoreactivity was observed in most of the brain lobes. High abundance of FMRFamidergic perikarya was found in the dorsal basal, the central palliovisceral, and the olfactory lobes, whereas none were observed in the middle suboesophageal mass. Single individual perikarya are located within the optic lobes and the vertical lobes. Although certain immunohistochemical traits are shared with other cephalopods, such as a wall-like arrangement of FMRFamide-like immunoreactive cell somata within the dorsal basal lobe, others have so far only been found in Idiosepius. However, future investigations on other species are necessary in order to broaden our knowledge on a common recruitment of certain neurotransmitters in distinct brain lobes of the highly advanced brain of cephalopods.


Zoomorphology | 2012

Comparative neuroanatomy of Caudofoveata, Solenogastres, Polyplacophora, and Scaphopoda (Mollusca) and its phylogenetic implications

Simone Faller; Birgen H. Rothe; Christiane Todt; Andreas Schmidt-Rhaesa; Rudi Loesel

The nervous system of invertebrates is considered to be a very conservative organ system and thus can be helpful to elucidate questions of phylogenetic relationships. Up to now, comparative neuroanatomical studies have been mainly focused on arthropods, where in-depth studies on major brain structures are abundant. In contrast, except for Gastropoda and Cephalopoda, the nervous system of representatives of the second largest phylum of invertebrates, the Mollusca, is as yet hardly investigated. We therefore initiated an immunohistochemical survey to contribute new neuroanatomical data for several molluscan taxa, especially the lesser known Caudofoveata, Solenogastres, Polyplacophora, and Scaphopoda, focusing on the cellular architecture and distribution of neurotransmitters in the brain. Antisera against the widespread neuroactive substances FMRFamide and serotonin were used to label subsets of neurons. Both antisera were additionally used in combination with acetylated α-tubulin and the nuclear marker DAPI. This enables us to describe the morphology of the nervous system at a fine resolution and to compare its cellular architecture between different species of one taxon, as well as between different taxa of mollusks. On the basis of these results, the nervous system of caudofoveates seems to be most highly derived within the so-called basal (non-conchiferan) mollusks, and a monophyly of a clade Aplacophora could not be confirmed. In general, the brain as well as the remaining nervous system of the molluscan taxa investigated shows a great variability, suggesting a deep time origin of the diversification of this prominent protostome clade.


Arthropod Structure & Development | 2011

Neuroarchitecture of the arcuate body in the brain of the spider Cupiennius salei (Araneae, Chelicerata) revealed by allatostatin-, proctolin-, and CCAP-immunocytochemistry and its evolutionary implications.

Rudi Loesel; Ernst-August Seyfarth; Peter Bräunig; Hans-Jürgen Agricola

Here we describe the neuronal organization of the arcuate body in the brain of the wandering spider Cupiennius salei. The internal anatomy of this major brain center is analyzed in detail based on allatostatin-, proctolin-, and crustacean cardioactive peptide (CCAP)-immunohistochemistry. Prominent neuronal features are demonstrated in graphic reconstructions. The stainings revealed that the neuroarchitecture of the arcuate body is characterized by several distinct layers some of which comprise nerve terminals that are organized in columnar, palisade-like arrays. The anatomy of the spiders arcuate body exhibits similarities as well as differences when compared to the central complex in the protocerebrum of the Tetraconata. Arguments for and against a possible homology of the arcuate body of the Chelicerata and the central complex of the Tetraconata and their consequences for the understanding of arthropod brain evolution are discussed.


PLOS ONE | 2013

The Nervous Systems of Basally Branching Nemertea (Palaeonemertea)

Patrick Beckers; Rudi Loesel; Thomas Bartolomaeus

In recent years, a lot of studies have been published dealing with the anatomy of the nervous system in different spiralian species. The only nemertean species investigated in this context probably shows derived characters and thus the conditions found there are not useful in inferring the relationship between nemerteans and other spiralian taxa. Ingroup relationships within Nemertea are still unclear, but there is some agreement that the palaeonemerteans form a basal, paraphyletic grade. Thus, palaeonemertean species are likely the most informative when comparing with other invertebrate groups. We therefore analyzed the nervous system of several palaeonemertean species by combining histology and immunostaining. 3D reconstructions based on the aligned slices were performed to get an overall impression of the central nervous system, and immunohistochemistry was chosen to reveal fine structures and to be able to compare the data with recently published results. The insights presented here permit a first attempt to reconstruct the primary organization of the nemertean nervous system. This comparative analysis allows substantiating homology hypotheses for nerves of the peripheral nervous system. This study also provides evidence that the nemertean brain primarily consists of two lobes connected by a strong ventral commissure and one to several dorsal commissures. During nemertean evolution, the brain underwent continuous compartmentalization into a pair of dorsal and ventral lobes interconnected by commissures and lateral tracts. Given that this conclusion can be corroborated by cladistic analyses, nemerteans should share a common ancestor with spiralians that primarily have a simple brain consisting of paired medullary, frontally commissurized and reinforced cords. Such an organization resembles the situation found in presumably basally branching annelids or mollusks.


Frontiers in Zoology | 2010

Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary

Stefan Richter; Rudi Loesel; Günter Purschke; Andreas Schmidt-Rhaesa; Gerhard Scholtz; Thomas Stach; Lars Vogt; Andreas Wanninger; Georg Brenneis; Carmen Döring; Simone Faller; Martin Fritsch; Peter Grobe; Carsten Michael Heuer; Sabrina Kaul; Ole S Møller; Carsten Müller; Verena Rieger; Birgen H. Rothe; Martin E.J. Stegner; Steffen Harzsch


Arthropod Structure & Development | 2002

Common design in a unique midline neuropil in the brains of arthropods.

Rudi Loesel; Dick R. Nässel; Nicholas J. Strausfeld


Arthropod Structure & Development | 2006

The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli

Nicholas J. Strausfeld; Camilla Mok Strausfeld; Sally Stowe; David M. Rowell; Rudi Loesel


Frontiers in Zoology | 2010

Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida

Carsten Michael Heuer; Carsten Müller; Christiane Todt; Rudi Loesel

Collaboration


Dive into the Rudi Loesel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard Scholtz

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge