Simone Faller
University Medical Center Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simone Faller.
Anesthesiology | 2010
Simone Faller; Stefan W. Ryter; Augustine M. K. Choi; Torsten Loop; Rene Schmidt; Alexander Hoetzel
Background:Mechanical ventilation still causes an unacceptably high rate of morbidity and mortality because of ventilator-induced lung injury (VILI). Therefore, new therapeutic strategies are needed to treat VILI. Hydrogen sulfide can induce hypothermia and suspended animation-like states in mice. Hydrogen sulfide can also confer antiinflammatory and antiapoptotic effects. This study investigates the organ-protective effects of inhaled hydrogen sulfide during mechanical ventilation. Methods:Mice were ventilated with a tidal volume of 12 ml/kg body weight for 6 h with synthetic air in the absence or presence of hydrogen sulfide (80 parts per million) and, in a second series, at either mild hypothermia or normothermia. Staining of lung sections determined the degree of lung damage by VILI score and apoptotic cells. Bronchoalveolar lavage fluid was analyzed for the cytokines interleukin-1&bgr; and macrophage inflammatory protein-1&bgr; and for neutrophil accumulation. Heme oxygenase-1 and heat shock protein 70 expression were assessed in the lung tissue by Western immunoblot analysis. Results:Mechanical ventilation at both hypothermia and normothermia led to a profound development of VILI, characterized by pulmonary edema, increased apoptosis, cytokine release, neutrophil recruitment, and up-regulation of the stress proteins such as heme oxygenase-1 and heat shock protein 70. In contrast, the application of hydrogen sulfide during ventilation at either mild hypothermia or normothermia prevented edema formation, apoptosis, proinflammatory cytokine production, neutrophil accumulation, and inhibited heme oxygenase-1 expression. Conclusions:Inhalation of hydrogen sulfide during mechanical ventilation protects against VILI by the inhibition of inflammatory and apoptotic responses. Hydrogen sulfide confers lung protection independently of its ability to induce mild hypothermia during ventilation.
Anesthesia & Analgesia | 2012
Simone Faller; Karl M. Strosing; Stefan W. Ryter; Hartmut Buerkle; Torsten Loop; Rene Schmidt; Alexander Hoetzel
BACKGROUND: Mechanical ventilation leads to ventilator-induced lung injury in animals, and can contribute to acute lung injury/acute respiratory distress syndrome in humans. Acute lung injury/acute respiratory distress syndrome currently causes an unacceptably high rate of morbidity and mortality among critically ill patients. Volatile anesthetics have been shown to exert anti-inflammatory and organ-protective effects in vivo. We investigated the effects of the volatile anesthetic isoflurane on lung injury during mechanical ventilation. METHODS: C57BL/6N mice were ventilated with a tidal volume of 12 mL/kg body weight for 6 hours in the absence or presence of isoflurane, and, in a second series, with or without the specific phosphoinositide 3-kinase/Akt inhibitor LY294002. Lung injury was determined by comparative histology, and by the isolation of bronchoalveolar lavage for differential cell counting and analysis of cytokine levels using enzyme-linked immunosorbent assays. Lung homogenates were analyzed for protein expression by Western blotting. RESULTS: Mechanical ventilation caused increases in alveolar wall thickening, cellular infiltration, and an elevated ventilator-induced lung injury score. Neutrophil influx and cytokine (i.e., interleukin-1&bgr;, and macrophage inflammatory protein-2) release were enhanced in the bronchoalveolar lavage of ventilated mice. The expression levels of the stress proteins hemeoxygenase-1 and heat shock protein-70 were elevated in lung tissue homogenates. Isoflurane ventilation significantly reduced lung damage, inflammation, and stress protein expression. In contrast, phosphorylation of Akt protein was substantially increased during mechanical ventilation with isoflurane. Inhibition of phosphoinositide 3-kinase/Akt signaling before mechanical ventilation completely reversed the lung-protective effects of isoflurane treatment in vivo. CONCLUSIONS: Inhalation of isoflurane during mechanical ventilation protects against lung injury by preventing proinflammatory responses. This protection is mediated via phosphoinositide 3-kinase/Akt signaling.
Medical gas research | 2012
Simone Faller; Kornelia K. Zimmermann; Karl M. Strosing; Helen Engelstaedter; Hartmut Buerkle; Rene Schmidt; Sashko G. Spassov; Alexander Hoetzel
BackgroundLocal pulmonary and systemic infections can lead to acute lung injury (ALI). The resulting lung damage can evoke lung failure and multiple organ dysfunction associated with increased mortality. Hydrogen sulfide (H2S) appears to represent a new therapeutic approach to ALI. The gas has been shown to mediate potent anti-inflammatory and organ protective effects in vivo. This study was designed to define its potentially protective role in sepsis-induced lung injury.MethodsC57BL/6 N mice received lipopolysaccharide (LPS) intranasally in the absence or presence of 80 parts per million H2S. After 6 h, acute lung injury was determined by comparative histology. Bronchoalveolar lavage (BAL) fluid was analyzed for total protein content and differential cell counting. BAL and serum were further analyzed for interleukin-1β, macrophage inflammatory protein-2, and/or myeloperoxidase glycoprotein levels by enzyme-linked immunosorbent assays. Differences between groups were analyzed by one way analysis of variance.ResultsHistological analysis revealed that LPS instillation led to increased alveolar wall thickening, cellular infiltration, and to an elevated ALI score. In the presence of H2S these changes were not observed despite LPS treatment. Moreover, neutrophil influx, and pro-inflammatory cytokine release were enhanced in BAL fluid of LPS-treated mice, but comparable to control levels in H2S treated mice. In addition, myeloperoxidase levels were increased in serum after LPS challenge and this was prevented by H2S inhalation.ConclusionInhalation of hydrogen sulfide protects against LPS-induced acute lung injury by attenuating pro-inflammatory responses.
Current Pharmaceutical Design | 2013
Simone Faller; Sashko G. Spassov; Kornelia K. Zimmermann; Stefan W. Ryter; Hartmut Buerkle; Torsten Loop; Rene Schmidt; Karl M. Strosing; Alexander Hoetzel
Oxygen therapy is a life-sustaining treatment for patients with respiratory failure. However, prolonged exposure to high oxygen concentrations often results in hyperoxia-induced acute lung injury (HALI). At present, no effective therapeutic intervention can attenuate the development of HALI. In the present study, we investigated whether hydrogen sulfide (H2S) can confer lung protection in a mouse model of HALI. C57BL/6 mice were either exposed to room air or 90 vol% oxygen and received either the H2S donor sodium hydrosulfide (NaHS, 10 mg/kg) or vehicle. Lung injury was assessed by an HALI score in tissue sections. Bronchoalveolar lavage fluid was analyzed for protein content and cellular infiltration. Reactive oxygen species (ROS) were detected by dihydroethidium staining. Angiopoietin- 2 was detected by Western Blotting. Pulmonary epithelial, endothelial, and macrophage cells were stimulated to produce ROS either in the absence or presence of NaHS. Mice exposed to hyperoxia developed substantial lung injury, characterized by an elevated HALI score, cellular infiltration, protein leakage, ROS production, and overexpression of angiopoietin-2. NaHS treatment abolished morphological indices of HALI. Angiopoietin-2 expression was significantly reduced by NaHS in vivo. In endothelial cells and macrophages, angiopoietin-2 was released due to ROS formation and decreased in the presence of NaHS. In conclusion, H2S protects from HALI by preventing ROS production and angiopoietin-2 release.
Laboratory Investigation | 2012
Simone Faller; Michael Foeckler; Karl M. Strosing; Sashko G. Spassov; Stefan W. Ryter; Hartmut Buerkle; Torsten Loop; Rene Schmidt; Alexander Hoetzel
Mechanical ventilation causes ventilator-induced lung injury (VILI), and contributes to acute lung injury/acute respiratory distress syndrome (ALI/ARDS), a disease with high morbidity and mortality among critically ill patients. Carbon monoxide (CO) can confer lung protective effects during mechanical ventilation. This study investigates the time dependency of CO therapy with respect to lung protection in animals subjected to mechanical ventilation. For this purpose, mice were ventilated with a tidal volume of 12 ml/kg body weight for 6 h with air in the absence or presence of CO (250 parts per million). Histological analysis of lung tissue sections was used to determine alveolar wall thickening and the degree of lung damage by VILI score. Bronchoalveolar lavage fluid was analyzed for total cellular influx, neutrophil accumulation, and interleukin-1β release. As the main results, mechanical ventilation induced pulmonary edema, cytokine release, and neutrophil recruitment. In contrast, application of CO for 6 h prevented VILI. Although CO application for 3 h followed by 3-h air ventilation failed to prevent lung injury, a further reduction of CO application time to 1 h in this setting provided sufficient protection. Pre-treatment of animals with inhaled CO for 1 h before ventilation showed no beneficial effect. Delayed application of CO beginning at 3 or 5 h after initiation of ventilation, reduced lung damage, total cell influx, and neutrophil accumulation. In conclusion, administration of CO for 6 h protected against VILI. Identical protective effects were achieved by limiting the administration of CO to the first hour of ventilation. Pre-treatment with CO had no impact on VILI. In contrast, delayed application of CO led to anti-inflammatory effects with time-dependent reduction in tissue protection.
Oxidative Medicine and Cellular Longevity | 2017
Sashko G. Spassov; Rosa Donus; Paul Mikael Ihle; Helen Engelstaedter; Alexander Hoetzel; Simone Faller
The development of ventilator-induced lung injury (VILI) is still a major problem in mechanically ventilated patients. Low dose inhalation of hydrogen sulfide (H2S) during mechanical ventilation has been proven to prevent lung damage by limiting inflammatory responses in rodent models. However, the capacity of H2S to affect oxidative processes in VILI and its underlying molecular signaling pathways remains elusive. In the present study we show that ventilation with moderate tidal volumes of 12 ml/kg for 6 h led to an excessive formation of reactive oxygen species (ROS) in mice lungs which was prevented by supplemental inhalation of 80 parts per million of H2S. In addition, phosphorylation of the signaling protein Akt was induced by H2S. In contrast, inhibition of Akt by LY294002 during ventilation reestablished lung damage, neutrophil influx, and proinflammatory cytokine release despite the presence of H2S. Moreover, the ability of H2S to induce the antioxidant glutathione and to prevent ROS production was reversed in the presence of the Akt inhibitor. Here, we provide the first evidence that H2S-mediated Akt activation is a key step in protection against VILI, suggesting that Akt signaling limits not only inflammatory but also detrimental oxidative processes that promote the development of lung injury.
Anesthesia & Analgesia | 2016
Karl M. Strosing; Simone Faller; Veronica Gyllenram; Helen Engelstaedter; Hartmut Buerkle; Sashko G. Spassov; Alexander Hoetzel
BACKGROUND:Mechanical ventilation is an important perioperative tool in anesthesia and a lifesaving treatment for respiratory failure, but it can lead to ventilator-associated lung injury. Inhaled anesthetics have demonstrated protective properties in various models of organ damage. We compared the lung-protective potential of inhaled sevoflurane, isoflurane, and desflurane in a mouse model of ventilator-induced lung injury (VILI). METHODS:C57BL/6N mice were randomized into 5 groups (n = 8/group). One group served as a control and 4 groups were subjected to mechanical ventilation with air (12 mL/kg tidal volume) for 6 hours. Ventilated animals were anesthetized with either ketamine and acepromazine, or 1 of 3 inhaled anesthetics: isoflurane, sevoflurane, or desflurane. Lung injury was assessed by lung histology, neutrophil counts, and interleukin-1&bgr; concentrations in bronchoalveolar lavage fluid. Antioxidant effects were explored by evaluation of production of reactive oxygen species (ROS) and glutathione content in lung tissue by immunofluorescence staining and confocal laser scanning microscopy. Changes in intercellular adhesion molecule-1 and src-protein-tyrosine-kinase levels were determined by real-time polymerase chain reaction and Western blot. RESULTS:Compared with nonventilated controls, ventilated mice anesthetized with ketamine had thickened alveolar walls, elevated VILI scores, higher polymorph neutrophil counts, and increased ROS production. Mice anesthetized with isoflurane and sevoflurane showed thinner alveolar septa, lower VILI scores, lower polymorph neutrophil counts, and lower interleukin-1&bgr; concentrations than ketamine mice. The expression of intercellular adhesion molecule-1/src-protein-tyrosine-kinase was neither affected by mechanical ventilation nor affected by administration of inhaled anesthetics. Mice anesthetized with isoflurane and sevoflurane showed less ROS production and higher glutathione contents compared with ketamine mice. Unexpectedly, desflurane-ventilated mice showed similar signs of lung injury compared with mice ventilated with air alone and receiving ketamine anesthesia. Desflurane failed to inhibit inflammatory responses and ROS production in lung tissue and developed no antioxidant potential. CONCLUSIONS:Although isoflurane and sevoflurane prevent ventilator-associated lung injury, desflurane does not. As an underlying mechanism, both inhaled anesthetics exert major anti-inflammatory and antioxidative effects.
PLOS ONE | 2014
Sashko G. Spassov; Dietmar Pfeifer; Karl M. Strosing; Stefan W. Ryter; Matthias Hummel; Simone Faller; Alexander Hoetzel
Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection.
Current Pharmaceutical Biotechnology | 2012
Simone Faller; Alexander Hoetzel
Despite modern clinical practice in critical care medicine, acute lung injury still causes unacceptably high rates of morbidity and mortality. Therefore, the challenge today is to identify new and effective strategies in order to improve the outcome of these patients. Carbon monoxide, endogenously produced by the heme oxygenase enzyme system, has emerged as promising gaseous therapeutic that exerts protective effects against inflammation, oxidative and mechanical stress, and apoptosis, thus potentially limiting acute lung injury. In this review we discuss the effects of inhaled carbon monoxide on acute lung injury that results from ischemia-reperfusion, transplantation, sepsis, hyperoxia, or mechanical ventilation, the latter referred to as ventilator-induced lung injury. Multiple investigations using in vivo and in vitro models have demonstrated anti-inflammatory, anti-apoptotic, and anti-proliferative properties of carbon monoxide in the lung when applied at low dose prior to or during stressful stimuli. The molecular mechanisms that are modulated by carbon monoxide exposure are still not fully understood. Carbon monoxide mediated lung protection involves several signaling pathways including mitogen activated protein kinases, nuclear factor-κB, activator protein-1, Akt, peroxisome proliferating- activated receptor-γ, early growth response-1, caveolin-1, hypoxia-inducible factor-1α, caspases, Bcl-2-family members, heat shock proteins, or molecules of the fibrinolytic axis. At present, clinical trials on the efficacy and safety of CO investigate whether the promising laboratory findings might be translatable to humans.
PLOS ONE | 2017
Simone Faller; Raphael Seiler; Rosa Donus; Helen Engelstaedter; Alexander Hoetzel; Sashko G. Spassov
[This corrects the article DOI: 10.1371/journal.pone.0176649.].