Ruffin E. Evans
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruffin E. Evans.
Science | 2016
Alp Sipahigil; Ruffin E. Evans; Denis D. Sukachev; Michael J. Burek; Johannes Borregaard; Mihir K. Bhaskar; Christian T. Nguyen; Jose Pacheco; Haig A. Atikian; Charles Meuwly; Ryan Camacho; Fedor Jelezko; Edward S. Bielejec; Hongkun Park; Marko Loncar; Mikhail D. Lukin
Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable nonlinear optical devices operating at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to nanoscale diamond devices. By placing SiV centers inside diamond photonic crystal cavities, we realize a quantum-optical switch controlled by a single color center. We control the switch using SiV metastable orbital states and verify optical switching at the single-photon level by using photon correlation measurements. We use Raman transitions to realize a single-photon source with a tunable frequency and bandwidth in a diamond waveguide. Finally, we create entanglement between two SiV centers by detecting indistinguishable Raman photons emitted into a single waveguide. Entanglement is verified using a novel superradiant feature observed in photon correlation measurements, paving the way for the realization of quantum networks.Integrated quantum nanophotonics Technologies that exploit the rules of quantum mechanics offer a potential advantage over classical devices in terms of sensitivity. Sipahigil et al. combined the quantum optical features of silicon-vacancy color centers with diamond-based photonic cavities to form a platform for integrated quantum nanophotonics (see the Perspective by Hanson). They could thus generate single photons from the color centers, optically switch light in the cavity by addressing the state of the color center, and quantum-mechanically entangle two color centers positioned in the cavity. The work presents a viable route to develop an integrated platform for quantum networks. Science, this issue p. 847; see also p. 835 An integrated quantum optical platform is demonstrated using silicon vacancy color centers and diamond photonics. Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable optical nonlinearities at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to diamond nanodevices. By placing SiV centers inside diamond photonic crystal cavities, we realize a quantum-optical switch controlled by a single color center. We control the switch using SiV metastable states and observe optical switching at the single-photon level. Raman transitions are used to realize a single-photon source with a tunable frequency and bandwidth in a diamond waveguide. By measuring intensity correlations of indistinguishable Raman photons emitted into a single waveguide, we observe a quantum interference effect resulting from the superradiant emission of two entangled SiV centers.
Science | 2016
Igor Lovchinsky; Alexander Sushkov; Elana Urbach; N. P. de Leon; Soonwon Choi; K. De Greve; Ruffin E. Evans; R. Gertner; Eric Bersin; Christoph Müller; Liam P. McGuinness; Fedor Jelezko; Ronald L. Walsworth; Hongkun Park; Mikhail D. Lukin
Sensing single proteins with diamonds Nuclear magnetic resonance is a powerful technique for medical imaging and the structural analysis of materials, but is usually associated with large-volume samples. Lovchinsky et al. exploited the magnetic properties of a single spin associated with a defect in diamond and manipulated it with a quantum-logic protocol. They demonstrated the magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to a specially treated diamond surface at room temperature. Science, this issue p. 836 The quantum properties of diamond are used for magnetic resonance spectroscopy of single proteins. Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.
Nano Letters | 2013
Birgit Hausmann; Brendan Shields; Qimin Quan; Yiwen Chu; N. P. de Leon; Ruffin E. Evans; Michael J. Burek; A. S. Zibrov; Matthew Markham; Daniel Twitchen; Hongkun Park; M. D. Lukin; M. Loncǎr
The realization of efficient optical interfaces for solid-state atom-like systems is an important problem in quantum science with potential applications in quantum communications and quantum information processing. We describe and demonstrate a technique for coupling single nitrogen vacancy (NV) centers to suspended diamond photonic crystal cavities with quality factors up to 6000. Specifically, we present an enhancement of the NV centers zero-phonon line fluorescence by a factor of ~ 7 in low-temperature measurements.
Nano Letters | 2014
Yiwen Chu; N. P. de Leon; Brendan Shields; Birgit Hausmann; Ruffin E. Evans; E. Togan; Michael J. Burek; Matthew Markham; Alastair Stacey; A. S. Zibrov; Amir Yacoby; Daniel Twitchen; Marko Loncar; Hongkun Park; Patrick Maletinsky; Mikhail D. Lukin
We report the observation of stable optical transitions in nitrogen-vacancy (NV) centers created by ion implantation. Using a combination of high temperature annealing and subsequent surface treatment, we reproducibly create NV centers with zero-phonon lines (ZPL) exhibiting spectral diffusion that is close to the lifetime-limited optical line width. The residual spectral diffusion is further reduced by using resonant optical pumping to maintain the NV(-) charge state. This approach allows for placement of NV centers with excellent optical coherence in a well-defined device layer, which is a crucial step in the development of diamond-based devices for quantum optics, nanophotonics, and quantum information science.
Physical Review Letters | 2017
Mihir K. Bhaskar; Denis D. Sukachev; Alp Sipahigil; Ruffin E. Evans; Michael J. Burek; Christian T. Nguyen; Lachlan J. Rogers; Petr Siyushev; Mathias H. Metsch; Hongkun Park; Fedor Jelezko; Marko Loncar; Mikhail D. Lukin
We demonstrate a quantum nanophotonics platform based on germanium-vacancy (GeV) color centers in fiber-coupled diamond nanophotonic waveguides. We show that GeV optical transitions have a high quantum efficiency and are nearly lifetime broadened in such nanophotonic structures. These properties yield an efficient interface between waveguide photons and a single GeV center without the use of a cavity or slow-light waveguide. As a result, a single GeV center reduces waveguide transmission by 18±1% on resonance in a single pass. We use a nanophotonic interferometer to perform homodyne detection of GeV resonance fluorescence. By probing the photon statistics of the output field, we demonstrate that the GeV-waveguide system is nonlinear at the single-photon level.
Physical review applied | 2016
Ruffin E. Evans; Alp Sipahigil; Denis D. Sukachev; A. S. Zibrov; Mikhail D. Lukin
The negatively-charged silicon-vacancy (
Physical Review B | 2017
Petr Siyushev; Mathias H. Metsch; Aroosa Ijaz; Jan M. Binder; Mihir K. Bhaskar; Denis D. Sukachev; Alp Sipahigil; Ruffin E. Evans; Christian T. Nguyen; Mikhail D. Lukin; P. R. Hemmer; Yuri Palyanov; Igor Kupriyanov; Yuri Borzdov; Lachlan J. Rogers; Fedor Jelezko
mathrm{SiV}^{-}
Nature Communications | 2017
Tim Schröder; Matthew E. Trusheim; Michael D. Walsh; Luozhou Li; Jiabao Zheng; Marco Schukraft; Alp Sipahigil; Ruffin E. Evans; Denis D. Sukachev; Christian T. Nguyen; Jose Pacheco; Ryan Camacho; Edward S. Bielejec; Mikhail D. Lukin; Dirk Englund
) center in diamond is a bright source of indistinguishable single photons and a useful resource in quantum information protocols. Until now,
Physical Review Letters | 2017
Denis D. Sukachev; Alp Sipahigil; Christian T. Nguyen; Mihir K. Bhaskar; Ruffin E. Evans; Fedor Jelezko; Mikhail D. Lukin
mathrm{SiV}^{-}
Physical review applied | 2017
Michael J. Burek; Charles Meuwly; Ruffin E. Evans; Mihir K. Bhaskar; Alp Sipahigil; Srujan Meesala; Bartholomeus Machielse; Denis D. Sukachev; Christian T. Nguyen; Jose Pacheco; Edward S. Bielejec; Mikhail D. Lukin; Marko Loncar
centers with narrow optical linewidths and small inhomogeneous distributions of