Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruifu Yang is active.

Publication


Featured researches published by Ruifu Yang.


PLOS ONE | 2009

Involvement of the Post-Transcriptional Regulator Hfq in Yersinia pestis Virulence

Jing Geng; Yajun Song; Lei Yang; Yanyan Feng; Yefeng Qiu; Gang Li; Jingyu Guo; Yujing Bi; Yi Qu; Wang Wang; Xiaoyi Wang; Zhaobiao Guo; Ruifu Yang; Yanping Han

Background Yersinia pestis is the causative agent of plague, which is transmitted primarily between fleas and mammals and is spread to humans through the bite of an infected flea or contact with afflicted animals. Hfq is proposed to be a global post-transcriptional regulator that acts by mediating interactions between many regulatory small RNAs (sRNAs) and their mRNA targets. Sequence comparisons revealed that Y. pestis appears to produce a functional homologue of E. coli Hfq. Methodology and Principal Findings Phenotype comparisons using in vitro assays demonstrated that Y. pestis Hfq was involved in resistance to H2O2, heat and polymyxin B and contributed to growth under nutrient-limiting conditions. The role of Hfq in Y. pestis virulence was also assessed using macrophage and mouse infection models, and the gene expression affected by Hfq was determined using microarray-based transcriptome and real time PCR analysis. The macrophage infection assay showed that the Y. pestis hfq deletion strain did not have any significant difference in its ability to associate with J774A.1 macrophage cells. However, hfq deletion appeared to significantly impair the ability of Y. pestis to resist phagocytosis and survive within macrophages at the initial stage of infection. Furthermore, the hfq deletion strain was highly attenuated in mice after subcutaneous or intravenous injection. Transcriptome analysis supported the results concerning the attenuated phenotype of the hfq mutant and showed that the deletion of the hfq gene resulted in significant alterations in mRNA abundance of 243 genes in more than 13 functional classes, about 23% of which are known or hypothesized to be involved in stress resistance and virulence. Conclusions and Significance Our results indicate that Hfq is a key regulator involved in Y. pestis stress resistance, intracellular survival and pathogenesis. It appears that Hfq acts by controlling the expression of many virulence- and stress-associated genes, probably in conjunction with small noncoding RNAs.


PLOS ONE | 2009

Genotyping and phylogenetic analysis of Yersinia pestis by MLVA: insights into the worldwide expansion of Central Asia plague foci.

Yanjun Li; Yujun Cui; Yolande Hauck; Mikhail E. Platonov; Erhei Dai; Yajun Song; Zhaobiao Guo; Christine Pourcel; Svetlana V. Dentovskaya; Andrey Anisimov; Ruifu Yang; Gilles Vergnaud

Background The species Yersinia pestis is commonly divided into three classical biovars, Antiqua, Medievalis, and Orientalis, belonging to subspecies pestis pathogenic for human and the (atypical) non-human pathogenic biovar Microtus (alias Pestoides) including several non-pestis subspecies. Recent progress in molecular typing methods enables large-scale investigations in the population structure of this species. It is now possible to test hypotheses about its evolution which were proposed decades ago. For instance the three classical biovars of different geographical distributions were suggested to originate from Central Asia. Most investigations so far have focused on the typical pestis subspecies representatives found outside of China, whereas the understanding of the emergence of this human pathogen requires the investigation of strains belonging to subspecies pestis from China and to the Microtus biovar. Methodology/Principal Findings Multi-locus VNTR analysis (MLVA) with 25 loci was performed on a collection of Y. pestis isolates originating from the majority of the known foci worldwide and including typical rhamnose-negative subspecies pestis as well as rhamnose-positive subspecies pestis and biovar Microtus. More than 500 isolates from China, the Former Soviet Union (FSU), Mongolia and a number of other foci around the world were characterized and resolved into 350 different genotypes. The data revealed very close relationships existing between some isolates from widely separated foci as well as very high diversity which can conversely be observed between nearby foci. Conclusions/Significance The results obtained are in full agreement with the view that the Y. pestis subsp. pestis pathogenic for humans emerged in the Central Asia region between China, Kazakhstan, Russia and Mongolia, only three clones of which spread out of Central Asia. The relationships among the strains in China, Central Asia and the rest of the world based on the MLVA25 assay provide an unprecedented view on the expansion and microevolution of Y. pestis.


PLOS ONE | 2008

Different Region Analysis for Genotyping Yersinia pestis Isolates from China

Yanjun Li; Erhei Dai; Yujun Cui; Min Li; Yujiang Zhang; Mingshou Wu; Dongsheng Zhou; Zhaobiao Guo; Xiang Dai; Baizhong Cui; Zhizhen Qi; Zuyun Wang; Hu Wang; Xingqi Dong; Zhizhong Song; Junhui Zhai; Yajun Song; Ruifu Yang

Background DFR (different region) analysis has been developed for typing Yesinia pestis in our previous study, and in this study, we extended this method by using 23 DFRs to investigate 909 Chinese Y. pestis strains for validating DFR-based genotyping method and better understanding adaptive microevolution of Y. pestis. Methodology/Principal Findings On the basis of PCR and Bionumerics data analysis, 909 Y. pestis strains were genotyped into 32 genomovars according to their DFR profiles. New terms, Major genomovar and Minor genomovar, were coined for illustrating evolutionary relationship between Y. pestis strains from different plague foci and different hosts. In silico DFR profiling of the completed or draft genomes shed lights on the evolutionary scenario of Y. pestis from Y. pseudotuberculosis. Notably, several sequenced Y. pestis strains share the same DFR profiles with Chinese strains, providing data for revealing the global plague foci expansion. Conclusions/significance Distribution of Y. pestis genomovars is plague focus-specific. Microevolution of biovar Orientalis was deduced according to DFR profiles. DFR analysis turns to be an efficient and inexpensive method to portrait the genome plasticity of Y. pestis based on horizontal gene transfer (HGT). DFR analysis can also be used as a tool in comparative and evolutionary genomic research for other bacteria with similar genome plasticity.


BMC Microbiology | 2009

Characterization of Zur-dependent genes and direct Zur targets in Yersinia pestis.

Yingli Li; Yefeng Qiu; He Gao; Zhaobiao Guo; Yanping Han; Yajun Song; Zongmin Du; Xiaoyi Wang; Dongsheng Zhou; Ruifu Yang

BackgroundThe zinc uptake regulator Zur is a Zn2+-sensing metalloregulatory protein involved in the maintenance of bacterial zinc homeostasis. Up to now, regulation of zinc homeostasis by Zur is poorly understood in Y. pestis.ResultsWe constructed a zur null mutant of Y. pestis biovar microtus strain 201. Microarray expression analysis disclosed a set of 154 Zur-dependent genes of Y. pestis upon exposure to zinc rich condition. Real-time reverse transcription (RT)-PCR was subsequently used to validate the microarray data. Based on the 154 Zur-dependent genes, predicted regulatory Zur motifs were used to screen for potential direct Zur targets including three putative operons znuA, znuCB and ykgM-RpmJ2. The LacZ reporter fusion analysis verified that Zur greatly repressed the promoter activity of the above three operons. The subsequent electrophoretic mobility shift assay (EMSA) demonstrated that a purified Zur protein was able to bind to the promoter regions of the above three operons. The DNase I footprinting was used to identify the Zur binding sites for the above three operons, verifying the Zur box sequence as predicted previously in γ-Proteobacteria. The primer extension assay was further used to determine the transcription start sites for the above three operons and to localize the -10 and -35 elements. Zur binding sites overlapped the -10 sequence of its target promoters, which was consistent with the previous observation that Zur binding would block the entry of the RNA polymerase to repress the transcription of its target genes.ConclusionZur as a repressor directly controls the transcription of znuA, znuCB and ykgM-RpmJ2 in Y. pestis by employing a conserved mechanism of Zur-promoter DNA association as observed in γ-Proteobacteria. Zur contributes to zinc homeostasis in Y. pestis likely through transcriptional repression of the high-affinity zinc uptake system ZnuACB and two alternative ribosomal proteins YkgM and RpmJ2.


PLOS ONE | 2013

Determination of sRNA Expressions by RNA-seq in Yersinia pestis Grown In Vitro and during Infection

Yanfeng Yan; Shanchun Su; Xiangrong Meng; Xiaolan Ji; Yi Qu; Zizhong Liu; Xiaoyi Wang; Yujun Cui; Zhongliang Deng; Dongsheng Zhou; Wencan Jiang; Ruifu Yang; Yanping Han

Background Small non-coding RNAs (sRNAs) facilitate host-microbe interactions. They have a central function in the post-transcriptional regulation during pathogenic lifestyles. Hfq, an RNA-binding protein that many sRNAs act in conjunction with, is required for Y. pestis pathogenesis. However, information on how Yersinia pestis modulates the expression of sRNAs during infection is largely unknown. Methodology and Principal Findings We used RNA-seq technology to identify the sRNA candidates expressed from Y. pestis grown in vitro and in the infected lungs of mice. A total of 104 sRNAs were found, including 26 previously annotated sRNAs, by searching against the Rfam database with 78 novel sRNA candidates. Approximately 89% (93/104) of these sRNAs from Y. pestis are shared with its ancestor Y. pseudotuberculosis. Ninety-seven percent of these sRNAs (101/104) are shared among more than 80 sequenced genomes of 135 Y. pestis strains. These 78 novel sRNAs include 62 intergenic and 16 antisense sRNAs. Fourteen sRNAs were selected for verification by independent Northern blot analysis. Results showed that nine selected sRNA transcripts were Hfq-dependent. Interestingly, three novel sRNAs were identified as new members of the transcription factor CRP regulon. Semi-quantitative analysis revealed that Y. pestis from the infected lungs induced the expressions of six sRNAs including RyhB1, RyhB2, CyaR/RyeE, 6S RNA, RybB and sR039 and repressed the expressions of four sRNAs, including CsrB, CsrC, 4.5S RNA and sR027. Conclusions and Significance This study is the first attempt to subject RNA from Y. pestis-infected samples to direct high-throughput sequencing. Many novel sRNAs were identified and the expression patterns of relevant sRNAs in Y. pestis during in vitro growth and in vivo infection were revealed. The annotated sRNAs accounted for the most abundant sRNAs either expressed in bacteria grown in vitro or differentially expressed in the infected lungs. These findings suggested these sRNAs may have important functions in Y. pestis physiology or pathogenesis.


Scientific Reports | 2016

Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay.

Yong Zhao; Haoran Wang; Pingping Zhang; Chongyun Sun; Xiaochen Wang; Xinrui Wang; Ruifu Yang; Chengbin Wang; Lei Zhou

The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 104 CFU mL−1 or 105 CFU mL−1 for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R2) of 0.916–0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water.


PLOS ONE | 2015

Comparative Genomic Analysis of 45 Type Strains of the Genus Bifidobacterium: A Snapshot of Its Genetic Diversity and Evolution

Zhihong Sun; Wenyi Zhang; Chenyi Guo; Xianwei Yang; Wenjun Liu; Yarong Wu; Yuqin Song; Lai Yu Kwok; Yujun Cui; Bilige Menghe; Ruifu Yang; Liangping Hu; Heping Zhang

Bifidobacteria are well known for their human health-promoting effects and are therefore widely applied in the food industry. Members of the Bifidobacterium genus were first identified from the human gastrointestinal tract and were then found to be widely distributed across various ecological niches. Although the genetic diversity of Bifidobacterium has been determined based on several marker genes or a few genomes, the global diversity and evolution scenario for the entire genus remain unresolved. The present study comparatively analyzed the genomes of 45 type strains. We built a robust genealogy for Bifidobacterium based on 402 core genes and defined its root according to the phylogeny of the tree of bacteria. Our results support that all human isolates are of younger lineages, and although species isolated from bees dominate the more ancient lineages, the bee was not necessarily the original host for bifidobacteria. Moreover, the species isolated from different hosts are enriched with specific gene sets, suggesting host-specific adaptation. Notably, bee-specific genes are strongly associated with respiratory metabolism and are potential in helping those bacteria adapt to the oxygen-rich gut environment in bees. This study provides a snapshot of the genetic diversity and evolution of Bifidobacterium, paving the way for future studies on the taxonomy and functional genomics of the genus.


PLOS ONE | 2012

Transcriptional regulation of opaR, qrr2-4 and aphA by the master quorum-sensing regulator OpaR in Vibrio parahaemolyticus.

Yiquan Zhang; Yefeng Qiu; Yafang Tan; Zhaobiao Guo; Ruifu Yang; Dongsheng Zhou

Background Vibrio parahaemolyticus is a leading cause of infectious diarrhea and enterogastritis via the fecal-oral route. V. harveyi is a pathogen of fishes and invertebrates, and has been used as a model for quorum sensing (QS) studies. LuxR is the master QS regulator (MQSR) of V. harveyi, and LuxR-dependent expression of its own gene, qrr2–4 and aphA have been established in V. harveyi. Molecular regulation of target genes by the V. parahaemolyticus MQSR OpaR is still poorly understood. Methodology/Principal Findings The bioinformatics analysis indicated that V. parahaemolyticus OpaR, V. harveyi LuxR, V. vulnificu SmcR, and V. alginolyticus ValR were extremely conserved, and that these four MQSRs appeared to recognize the same conserved cis-acting signals, which was represented by the consensus constructs manifesting as a position frequency matrix and as a 20 bp box, within their target promoters. The MQSR box-like sequences were found within the upstream DNA regions of opaR, qrr2–4 and aphA in V. parahaemolyticus, and the direct transcriptional regulation of these target genes by OpaR were further confirmed by multiple biochemical experiments including primer extension assay, gel mobility shift assay, and DNase I footprinting analysis. Translation and transcription starts, core promoter elements for sigma factor recognition, Shine-Dalgarno sequences for ribosome recognition, and OpaR-binding sites were determined for the five target genes of OpaR, which gave a structural map of the OpaR-dependent promoters. Further computational promoter analysis indicated the above regulatory circuits were shared by several other closely related Vibrios but with slight exceptions. Conclusions/Significance This study gave a comprehensive computational and characterization of the direct transcriptional regulation of five target genes, opaR, qrr2–4 and ahpA, by OpaR in V. parahaemolyticus. These characterized regulatory circuits were conserved in V. harveyi and V. parahaemolyticus.


BMC Microbiology | 2011

Phenotypic and transcriptional analysis of the osmotic regulator OmpR in Yersinia pestis

He Gao; Yiquan Zhang; Yanping Han; Lin Yang; Xia Liu; Zhaobiao Guo; Yafang Tan; Xinxiang Huang; Dongsheng Zhou; Ruifu Yang

BackgroundThe osmotic regulator OmpR in Escherichia coli regulates differentially the expression of major porin proteins OmpF and OmpC. In Yersinia enterocolitica and Y. pseudotuberculosis, OmpR is required for both virulence and survival within macrophages. However, the phenotypic and regulatory roles of OmpR in Y. pestis are not yet fully understood.ResultsY. pestis OmpR is involved in building resistance against phagocytosis and controls the adaptation to various stressful conditions met in macrophages. The ompR mutation likely did not affect the virulence of Y. pestis strain 201 that was a human-avirulent enzootic strain. The microarray-based comparative transcriptome analysis disclosed a set of 224 genes whose expressions were affected by the ompR mutation, indicating the global regulatory role of OmpR in Y. pestis. Real-time RT-PCR or lacZ fusion reporter assay further validated 16 OmpR-dependent genes, for which OmpR consensus-like sequences were found within their upstream DNA regions. ompC, F, X, and R were up-regulated dramatically with the increase of medium osmolarity, which was mediated by OmpR occupying the target promoter regions in a tandem manner.ConclusionOmpR contributes to the resistance against phagocytosis or survival within macrophages, which is conserved in the pathogenic yersiniae. Y. pestis OmpR regulates ompC, F, X, and R directly through OmpR-promoter DNA association. There is an inducible expressions of the pore-forming proteins OmpF, C, and × at high osmolarity in Y. pestis, in contrast to the reciprocal regulation of them in E. coli. The main difference is that ompF expression is not repressed at high osmolarity in Y. pestis, which is likely due to the absence of a promoter-distal OmpR-binding site for ompF.


BMC Microbiology | 2011

Regulatory effects of cAMP receptor protein (CRP) on porin genes and its own gene in Yersinia pestis

He Gao; Yiquan Zhang; Lin Yang; Xia Liu; Zhaobiao Guo; Yafang Tan; Yanping Han; Xinxiang Huang; Dongsheng Zhou; Ruifu Yang

BackgroundThe cAMP receptor protein (CRP) is a global bacterial regulator that controls many target genes. The CRP-cAMP complex regulates the ompR-envZ operon in E. coli directly, involving both positive and negative regulations of multiple target promoters; further, it controls the production of porins indirectly through its direct action on ompR-envZ. Auto-regulation of CRP has also been established in E. coli. However, the regulation of porin genes and its own gene by CRP remains unclear in Y. pestis.ResultsY. pestis employs a distinct mechanism indicating that CRP has no regulatory effect on the ompR-envZ operon; however, it stimulates ompC and ompF directly, while repressing ompX. No transcriptional regulatory association between CRP and its own gene can be detected in Y. pestis, which is also in contrast to the fact that CRP acts as both repressor and activator for its own gene in E. coli. It is likely that Y. pestis OmpR and CRP respectively sense different signals (medium osmolarity, and cellular cAMP levels) to regulate porin genes independently.ConclusionAlthough the CRP of Y. pestis shows a very high homology to that of E. coli, and the consensus DNA sequence recognized by CRP is shared by the two bacteria, the Y. pestis CRP can recognize the promoters of ompC, F, and X directly rather than that of its own gene, which is different from the relevant regulatory circuit of E. coli. Data presented here indicate a remarkable remodeling of the CRP-mediated regulation of porin genes and of its own one between these two bacteria.

Collaboration


Dive into the Ruifu Yang's collaboration.

Top Co-Authors

Avatar

Dongsheng Zhou

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanping Han

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhaobiao Guo

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoyi Wang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Yafang Tan

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Yajun Song

University College Cork

View shared research outputs
Top Co-Authors

Avatar

Yujing Bi

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Huiying Yang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Wang L

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge