Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yajun Song is active.

Publication


Featured researches published by Yajun Song.


The New England Journal of Medicine | 2011

Open-Source Genomic Analysis of Shiga-Toxin-Producing E. coli O104:H4

Holger Rohde; Junjie Qin; Yujun Cui; Dongfang Li; Nicholas J. Loman; Moritz Hentschke; Wentong Chen; Fei Pu; Yangqing Peng; Junhua Li; Feng Xi; Shenghui Li; Yin Li; Zhaoxi Zhang; Xianwei Yang; Meiru Zhao; Peng Wang; Yuanlin Guan; Zhong Cen; Xiangna Zhao; Martin Christner; Robin Kobbe; Sebastian Loos; Jun Oh; Liang Yang; Antoine Danchin; George F. Gao; Yajun Song; Yingrui Li; Huanming Yang

An outbreak caused by Shiga-toxin–producing Escherichia coli O104:H4 occurred in Germany in May and June of 2011, with more than 3000 persons infected. Here, we report a cluster of cases associated with a single family and describe an open-source genomic analysis of an isolate from one member of the family. This analysis involved the use of rapid, bench-top DNA sequencing technology, open-source data release, and prompt crowd-sourced analyses. In less than a week, these studies revealed that the outbreak strain belonged to an enteroaggregative E. coli lineage that had acquired genes for Shiga toxin 2 and for antibiotic resistance.


PLOS ONE | 2007

A Glimpse of Streptococcal Toxic Shock Syndrome from Comparative Genomics of S. suis 2 Chinese Isolates

Chen Chen; Jiaqi Tang; Wei Dong; Changjun Wang; Youjun Feng; Jing Wang; Feng Zheng; Xiuzhen Pan; Di Liu; Ming Li; Yajun Song; Xinxing Zhu; Haibo Sun; Tao Feng; Zhaobiao Guo; Aiping Ju; Junchao Ge; Yaqing Dong; Wen Sun; Yongqiang Jiang; Jun Wang; Jinghua Yan; Huanming Yang; Xiaoning Wang; George F. Gao; Ruifu Yang; Jian Wang; Jun Yu

Background Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen, causing more than 200 cases of severe human infection worldwide, with the hallmarks of meningitis, septicemia, arthritis, etc. Very recently, SS2 has been recognized as an etiological agent for streptococcal toxic shock syndrome (STSS), which was originally associated with Streptococcus pyogenes (GAS) in Streptococci. However, the molecular mechanisms underlying STSS are poorly understood. Methods and Findings To elucidate the genetic determinants of STSS caused by SS2, whole genome sequencing of 3 different Chinese SS2 strains was undertaken. Comparative genomics accompanied by several lines of experiments, including experimental animal infection, PCR assay, and expression analysis, were utilized to further dissect a candidate pathogenicity island (PAI). Here we show, for the first time, a novel molecular insight into Chinese isolates of highly invasive SS2, which caused two large-scale human STSS outbreaks in China. A candidate PAI of ∼89 kb in length, which is designated 89K and specific for Chinese SS2 virulent isolates, was investigated at the genomic level. It shares the universal properties of PAIs such as distinct GC content, consistent with its pivotal role in STSS and high virulence. Conclusions To our knowledge, this is the first PAI candidate from S. suis worldwide. Our finding thus sheds light on STSS triggered by SS2 at the genomic level, facilitates further understanding of its pathogenesis and points to directions of development on some effective strategies to combat highly pathogenic SS2 infections.


Journal of Bacteriology | 2004

Genetics of Metabolic Variations between Yersinia pestis Biovars and the Proposal of a New Biovar, microtus

Dongsheng Zhou; Zongzhong Tong; Yajun Song; Yanping Han; Decui Pei; Xin Pang; Junhui Zhai; Min Li; Baizhong Cui; Zhizhen Qi; Lixia Jin; Ruixia Dai; Zongmin Du; Jin Wang; Zhaobiao Guo; Jian Wang; Peitang Huang; Ruifu Yang

Yersinia pestis has been historically divided into three biovars: antiqua, mediaevalis, and orientalis. On the basis of this study, strains from Microtus-related plague foci are proposed to constitute a new biovar, microtus. Based on the ability to ferment glycerol and arabinose and to reduce nitrate, Y. pestis strains can be assigned to one of four biovars: antiqua (glycerol positive, arabinose positive, and nitrate positive), mediaevalis (glycerol positive, arabinose positive, and nitrate negative), orientalis (glycerol negative, arabinose positive, and nitrate positive), and microtus (glycerol positive, arabinose negative, and nitrate negative). A 93-bp in-frame deletion in glpD gene results in the glycerol-negative characteristic of biovar orientalis strains. Two kinds of point mutations in the napA gene may cause the nitrate reduction-negative characteristic in biovars mediaevalis and microtus, respectively. A 122-bp frameshift deletion in the araC gene may lead to the arabinose-negative phenotype of biovar microtus strains. Biovar microtus strains have a unique genomic profile of gene loss and pseudogene distribution, which most likely accounts for the human attenuation of this new biovar. Focused, hypothesis-based investigations on these specific genes will help delineate the determinants that enable this deadly pathogen to be virulent to humans and give insight into the evolution of Y. pestis and plague pathogenesis. Moreover, there may be the implications for development of biovar microtus strains as a potential vaccine.


Journal of Bacteriology | 2004

DNA Microarray Analysis of Genome Dynamics in Yersinia pestis: Insights into Bacterial Genome Microevolution and Niche Adaptation

Dongsheng Zhou; Yanping Han; Yajun Song; Zongzhong Tong; Jin Wang; Zhaobiao Guo; Decui Pei; Xin Pang; Junhui Zhai; Min Li; Baizhong Cui; Zhizhen Qi; Lixia Jin; Ruixia Dai; Zongmin Du; Jingyue Bao; Xiuqing Zhang; Jun Yu; Jian Wang; Peitang Huang; Ruifu Yang

Genomics research provides an unprecedented opportunity for us to probe into the pathogenicity and evolution of the worlds most deadly pathogenic bacterium, Yersinia pestis, in minute detail. In our present work, extensive microarray analysis in conjunction with PCR validation revealed that there are considerable genome dynamics, due to gene acquisition and loss, in natural populations of Y. pestis. We established a genomotyping system to group homologous isolates of Y. pestis, based on profiling or gene acquisition and loss in their genomes, and then drew an outline of parallel microevolution of the Y. pestis genome. The acquisition of a number of genomic islands and plasmids most likely induced Y. pestis to evolve rapidly from Yersinia pseudotuberculosis to a new, deadly pathogen. Horizontal gene acquisition also plays a key role in the dramatic evolutionary segregation of Y. pestis lineages (biovars and genomovars). In contrast to selective genome expansion by gene acquisition, genome reduction occurs in Y. pestis through the loss of DNA regions. We also theorized about the links between niche adaptation and genome microevolution. The transmission, colonization, and expansion of Y. pestis in the natural foci of endemic plague are parallel and directional and involve gradual adaptation to the complex of interactions between the environment, the hosts, and the pathogen itself. These adaptations are based on the natural selections against the accumulation of genetic changes within genome. Our data strongly support that the modern plague originated from Yunnan Province in China, due to the arising of biovar orientalis from biovar antiqua rather than mediaevalis.


Sensors and Actuators B-chemical | 2006

Rapid quantitative detection of Yersinia pestis by lateral-flow immunoassay and up-converting phosphor technology-based biosensor

Zhongqiang Yan; Lei Zhou; Yongkai Zhao; Jing Wang; Lihua Huang; Kongxin Hu; Hong Wang; Zhaobiao Guo; Yajun Song; Huijie Huang; Ruifu Yang

Abstract Up-converting phosphor technology (UPT)-based lateral-flow immunoassay has been developed for quantitative detection of Yersinia pestis rapidly and specifically. In this assay, 400nm up-converting phosphor particles were used as the reporter. A sandwich immumoassay was employed by using a polyclonal antibody against F1 antigen of Y. pestis immobilized on the nitrocellulose membrane and the same antibody conjugated to the UPT particles. The signal detection of the strips was performed by the UPT-based biosensor that could provide a 980nm IR laser to excite the phosphor particles, then collect the visible luminescence emitted by the UPT particles and finally convert it to the voltage as a signal. V T and V C stand for the multiplied voltage units for the test and the control line, respectively, and the ratio V T/V C is directly proportional to the number of Y. pestis in a sample. We observed a good linearity between the ratio and logCFU/ml of Y. pestis above the detection limit, which was approximately 104 CFU/ml. The precision of the intra- and inter-assay was below 15% (coefficient of variation, CV). Cross-reactivity with related Gram-negative enteric bacteria was not found. The UPT-LF immunoassay system presented here takes less than 30min to perform from the sample treatment to the data analysis. The current paper includes only preliminary data concerning the biomedical aspects of the assay, but is more concentrated on the technical details of establishing a rapid manual assay using a state-of-the-art label chemistry.


Infection and Immunity | 2005

Protein Microarray for Profiling Antibody Responses to Yersinia pestis Live Vaccine

Bei Li; Lingxiao Jiang; Qifeng Song; Junxin Yang; Zeliang Chen; Zhaobiao Guo; Dongsheng Zhou; Zongmin Du; Yajun Song; Jin Wang; Hongxia Wang; Shouyi Yu; Jian Wang; Ruifu Yang

ABSTRACT A protein microarray representing 149 Yersinia pestis proteins was developed to profile antibody responses in EV76-immunized rabbits. Antibodies to 50 proteins were detected. There are 11 proteins besides F1 and V antigens to which the predominant antibody response occurred, and these proteins show promise for further evaluation as candidates for subunit vaccines and/or diagnostic antigens.


Microbiology and Immunology | 2004

Microarray analysis of temperature-induced transcriptome of Yersinia pestis.

Yanping Han; Dongsheng Zhou; Xin Pang; Yajun Song; Ling Zhang; Jingyue Bao; Zongzhong Tong; Jin Wang; Zhaobiao Guo; Junhui Zhai; Zongmin Du; Xiaoyi Wang; Xiuqing Zhang; Jian Wang; Peitang Huang; Ruifu Yang

Yersinia pestis, the etiologic agent of plague, must acclimatize itself to temperature shifts between the temperature (26 C) for flea blockage and the body temperature (37 C) of warm‐blooded hosts during its life cycle. Here a whole‐genome DNA microarray was used to investigate transcriptional regulation upon the upshift of growth temperature from 26 to 37 C in a chemically defined medium. Four hundred and one genes were regulated differentially under the two temperatures. About 39% of these genes were up‐regulated at 37 C, whereas 61% were down‐regulated. Temperature‐induced changes occurred at the level of transcription of genes encoding proven or predicted virulence factors, regulators, metabolism‐associated proteins, prophages, and hypothetical proteins. Strikingly, many gene clusters displayed a co‐transcription pattern in response to temperature upshift. Our data provided a genome‐wide profile of gene transcription induced by temperature shift and should shed light on the pathogenicity and host‐microbe interaction of this deadly pathogen.


Antimicrobial Agents and Chemotherapy | 2012

Novel plasmid and its variant harboring both a bla(NDM-1) gene and type IV secretion system in clinical isolates of Acinetobacter lwoffii.

Hongyan Hu; Yongfei Hu; Yuanlong Pan; Hui Liang; Haiyan Wang; Xiumei Wang; Qinfang Hao; Xiaoli Yang; Xi Yang; Xue Xiao; Chunguang Luan; Yi Yang; Yujun Cui; Ruifu Yang; George F. Gao; Yajun Song; Baoli Zhu

ABSTRACT The spread of the blaNDM-1 gene is gaining worldwide attentions. This gene is usually carried by large plasmids and has been discovered in diverse bacteria since it was originally found in Klebsiella pneumoniae. Here we report the complete sequences of a blaNDM-1-bearing plasmid, pNDM-BJ01, and its variant, pNDM-BJ02, isolated from clinical Acinetobacter lwoffii strains. The plasmid pNDM-BJ01 is 47.3 kb in size and cannot be classified into any known plasmid incompatibility group, thus representing a novel plasmid with an unknown maintenance mechanism. This plasmid contains both a blaNDM-1 gene and a type IV secretion system (T4SS) gene cluster. The T4SS is assigned to the P-type T4SS group, which usually encode a short, rigid pilus, and the blaNDM-1 gene is located within a composite transposon flanked by two insertion elements of ISAba125. Plasmid pNDM-BJ02 is nearly identical to pNDM-BJ01 except that one copy of the ISAba125 element is missing, and it is therefore regarded as a variant of pNDM-BJ01. Sequence alignment indicated that this blaNDM-1-containing composite transposon, which can also be captured by other mobile elements, was probably a product of multiple recombination events and can move as a whole by transposition.


Journal of Bacteriology | 2008

The Iron-Responsive Fur Regulon in Yersinia pestis

He Gao; Dongsheng Zhou; Yingli Li; Zhaobiao Guo; Yanping Han; Yajun Song; Junhui Zhai; Zongmin Du; Xiaoyi Wang; Jingmei Lu; Ruifu Yang

The ferric uptake regulator (Fur) is a predominant bacterial regulator controlling the iron assimilation functions in response to iron availability. Our previous microarray analysis on Yersinia pestis defined the iron-Fur modulon. In the present work, we reannotated the iron assimilation genes in Y. pestis, and the resulting genes in complementation with those disclosed by microarray constituted a total of 34 genome loci (putative operons) that represent the potential iron-responsive targets of Fur. The subsequent real-time reverse transcription-PCR (RT-PCR) in conjunction with the primer extension analysis showed that 32 of them were regulated by Fur in response to iron starvation. A previously predicted Fur box sequence was then used to search against the promoter regions of the 34 operons; the homologue of the above box could be predicted in each promoter tested. The subsequent electrophoretic mobility shift assay (EMSA) demonstrated that a purified His(6) tag-fused Fur protein was able to bind in vitro to each of these promoter regions. Therefore, Fur is a global regulator, both an activator and a repressor, and directly controls not only almost all of the iron assimilation functions but also a variety of genes involved in various non-iron functions for governing a complex regulatory cascade in Y. pestis. In addition, real-time RT-PCR, primer extension, EMSA, and DNase I footprinting assay were used to elucidate the Fur regulation of the ybt locus encoding a virulence-required iron uptake system. By combining the published data on the YbtA regulation of ybt, we constructed a concise Fur/YbtA regulatory network with a map of the Fur-promoter DNA interactions within the ybt locus. The data presented here give us an overview of the iron-responsive Fur regulon in Y. pestis.


PLOS ONE | 2009

Involvement of the Post-Transcriptional Regulator Hfq in Yersinia pestis Virulence

Jing Geng; Yajun Song; Lei Yang; Yanyan Feng; Yefeng Qiu; Gang Li; Jingyu Guo; Yujing Bi; Yi Qu; Wang Wang; Xiaoyi Wang; Zhaobiao Guo; Ruifu Yang; Yanping Han

Background Yersinia pestis is the causative agent of plague, which is transmitted primarily between fleas and mammals and is spread to humans through the bite of an infected flea or contact with afflicted animals. Hfq is proposed to be a global post-transcriptional regulator that acts by mediating interactions between many regulatory small RNAs (sRNAs) and their mRNA targets. Sequence comparisons revealed that Y. pestis appears to produce a functional homologue of E. coli Hfq. Methodology and Principal Findings Phenotype comparisons using in vitro assays demonstrated that Y. pestis Hfq was involved in resistance to H2O2, heat and polymyxin B and contributed to growth under nutrient-limiting conditions. The role of Hfq in Y. pestis virulence was also assessed using macrophage and mouse infection models, and the gene expression affected by Hfq was determined using microarray-based transcriptome and real time PCR analysis. The macrophage infection assay showed that the Y. pestis hfq deletion strain did not have any significant difference in its ability to associate with J774A.1 macrophage cells. However, hfq deletion appeared to significantly impair the ability of Y. pestis to resist phagocytosis and survive within macrophages at the initial stage of infection. Furthermore, the hfq deletion strain was highly attenuated in mice after subcutaneous or intravenous injection. Transcriptome analysis supported the results concerning the attenuated phenotype of the hfq mutant and showed that the deletion of the hfq gene resulted in significant alterations in mRNA abundance of 243 genes in more than 13 functional classes, about 23% of which are known or hypothesized to be involved in stress resistance and virulence. Conclusions and Significance Our results indicate that Hfq is a key regulator involved in Y. pestis stress resistance, intracellular survival and pathogenesis. It appears that Hfq acts by controlling the expression of many virulence- and stress-associated genes, probably in conjunction with small noncoding RNAs.

Collaboration


Dive into the Yajun Song's collaboration.

Top Co-Authors

Avatar

Ruifu Yang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhaobiao Guo

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Zongmin Du

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Dongsheng Zhou

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanping Han

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoyi Wang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Jin Wang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Junhui Zhai

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Yafang Tan

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge