Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruirui Chen is active.

Publication


Featured researches published by Ruirui Chen.


Global Change Biology | 2014

Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories.

Ruirui Chen; Mehmet Senbayram; Sergey Blagodatsky; Olga Myachina; Klaus Dittert; Xiangui Lin; Evgenia Blagodatskaya; Yakov Kuzyakov

The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural (13) C labelling adding C4 -sucrose or C4 -maize straw to C3 -soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in microbial N mining theory can be ascribed to K-strategists. In contrast, stoichiometric decomposition theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r-strategists.


Environmental Science & Technology | 2012

Long-Term Balanced Fertilization Decreases Arbuscular Mycorrhizal Fungal Diversity in an Arable Soil in North China Revealed by 454 Pyrosequencing

Xiangui Lin; Youzhi Feng; Huayong Zhang; Ruirui Chen; Junhua Wang; Jiabao Zhang; Haiyan Chu

A balanced fertilization can increase crop yields partly due to stimulated microbial activities and growths. In this study, we investigated arbuscular mycorrhizal fungi (AMF) in arable soils to determine the optimal practices for an effective fertilization. We used pyrosequencing-based approach to study AMF diversity, as well as their responses to different long-term (>20 years) fertilizations, including OM (organic manure) and mix chemical fertilizers of NP (nitrogen-phosphorus), NK (nitrogen-potassium), and NPK (nitrogen-phosphorus-potassium). Results revealed that 124,998 of 18S rRNA gene fragments were dominated by Glomeromycota with 59,611 sequences, generating 70 operational taxonomic units (OTUs), of which the three largest families were Glomeraceae, Gigasporaceae and Acaulosporaceae. In Control and NK plots, AMF diversity and richness significantly decreased under long-term P fertilizations, such as NP, NPK, and OM. Concomitantly, the AMF community structure shifted. Supported by canonical correspondence analysis, we hereby propose that long-term balanced fertilization, especially P fertilizer with additional N fertilizer, helps the build-up of soil nutrients. Consequently, some AMF community constituents are sacrificed, propelled by the self-regulation of plant-AMF-microbes system, resulting in an agro-ecosystem with a better sustainability. This knowledge would be valuable toward better understandings of AMF community in agro-ecosystem, and long-term ecosystem benefits of the balanced fertilization.


Rapid Communications in Mass Spectrometry | 2009

Contribution of nitrification and denitrification to nitrous oxide emissions from soils after application of biogas waste and other fertilizers

Mehmet Senbayram; Ruirui Chen; Karl H. Mühling; Klaus Dittert

The attribution of nitrous oxide (N(2)O) emission to organic and inorganic N fertilizers requires understanding of how these inputs affect the two biological processes, i.e. denitrification and nitrification. Contradictory findings have been reported when the effects of organic and inorganic fertilizers on nitrous oxide emission were compared. Here we aimed to contribute to the understanding of such variation using (15)N-labelling techniques. We determined the processes producing N(2)O, and tested the effects of soil moisture, N rates, and the availability of organic matter. In a pot experiment, we compared soil treated with biogas waste (BGW) and mineral ammonium sulphate (Min-N) applied at four rates under two soil moisture regimes. We also tested biogas waste, conventional cattle slurry and mineral N fertilizer in a grassland field experiment. During the first 37 days after application we observed N(2)O emissions of 5.6 kg N(2)O-N ha(-1) from soils supplied with biogas waste at a rate of 360 kg N ha(-1). Fluxes were ca. 5-fold higher at 85% than at 65% water holding capacity (WHC). The effects of fertilizer types and N rates on N(2)O emission were significant only when the soil moisture was high. Organic fertilizer treated soils showed much higher N(2)O emissions than those receiving mineral fertilizer in both, pot and field experiment. Over all the treatments the percentage of the applied N emitted as N(2)O was 2.56% in BGW but only 0.68% in Min-N. In the pot experiment isotope labelling indicated that 65-95% of the N(2)O was derived from denitrification for all fertilizer types. However, the ratio of denitrification/nitrification derived N(2)O was lower at 65% than at 85% WHC. We speculate that the application of organic matter in conjunction with ammonium nitrogen first leads to a decrease in denitrification-derived N(2)O emission compared with soil receiving mineral fertilizer. However, at later stages when denitrification becomes C-limited, higher N(2)O emissions are induced when the soil moisture is high.


Environmental Geochemistry and Health | 2004

Changes of soil microbiological properties caused by land use changing from rice-wheat rotation to vegetable cultivation

Xiao-Qing Lin; Rui Yin; Hong Zhang; J.F. Huang; Ruirui Chen; Zongwei Cao

A survey was done recently in Jiaxing city of Zhejiang Province in the Yangtze River Delta to compare the differences of soil microbiological properties among paddy soils with different land use including continuous open-field vegetable cultivation (OFVC), plastic-greenhouse vegetable cultivation (PGVC) and traditional rice–wheat rotation (RWR). The soil types included are percolating, permeable and waterlogged paddy soils. The results indicate that the microbial flora was markedly changed as the land use changed for all the three soil types. In continuous vegetable cultivation soils, especially in PGVC soils, the bacteria amounts decreased dramatically, but the fungal and actinomyce amounts increased as compared with RWR soils. The dehydrogenase activities decreased significantly in vegetable soils, especially in PGVC soils as compared with RWR soils. The microbial biomass C and the total phospholipid contents (TPL) in vegetable cultivation soil greatly decreased as compared with RWR soils. Biolog analysis indicated that the kinds of carbon sources that could be metabolized by native microbes in PGVC soils greatly decreased as compared with OFVC soils and RWR soils, revealing that microbial diversity had decreased since land use change. The activities of some soil enzymes including urease, invertase and phosphase were all lower in OFVC soils than those in RWR soils, and those in PGVC soils were the lowest. The degradation of microbiological activities in continuous vegetable cultivation soils, especially in PGVC soils, as compared with RWR soils might have been caused by soil acidification and accumulation of salts due to overuse of both organic and inorganic fertilizers in vegetable cultivation.


Journal of Environmental Management | 2015

N2O emissions and nitrogen transformation during windrow composting of dairy manure

Ruirui Chen; Yiming Wang; Wei Wang; Shiping Wei; Zhongwang Jing; Xiangui Lin

Windrow composting involves piling and regularly turning organic wastes in long rows, being in the succession of static standing periods between two consecutive pile turnings as well as a period of pile turning. N2O emissions and N transformation were investigated during the processes of windrow composting. In contrast to the conventional understanding, we observed that N2O concentrations inside compost materials were significantly higher after pile turning (APT) than before pile turning (BPT). Pile turning triggered a burst of N2O production rather than simple gaseous N2O escape from the stirred compost. Denitrification was the dominant pathway in pile turning because the observed [Formula: see text] and [Formula: see text] concentrations were significantly lower APT compared to BPT. The sudden exposure of O2 severely inhibited N2O reductase, which can block the transformation of N2O to N2 and thus caused an increase of N2O emission. As the [Formula: see text] and [Formula: see text] concentrations rose during the following 48 standing hours, nitrification dominated N transformation and did not cause an increase of surface N2O emissions. Thus, pile turning resulted in a dramatic conversion of N transformation and strongly influenced its flux size. It was also found that high [Formula: see text] was accumulated in the compost and had a strong correlation with N2O emissions. Practical methods regulating nitrite and the frequency of pile turning would be useful to mitigate N2O emissions in manure composting.


Bioenergy Research | 2014

Emission of N2O from Biogas Crop Production Systems in Northern Germany

Mehmet Senbayram; Ruirui Chen; Babette Wienforth; Antje Herrmann; Henning Kage; Karl H. Mühling; Klaus Dittert

There is a growing concern that greenhouse gas (GHG) emissions during agricultural energy crop production might negate GHG emission savings which was not intended when promoting the use of renewable energy. Nitrous oxide (N2O) is a major GHG, and in addition, it is the most powerful ozone-depleting compound that is emitted by human activity. The use of N fertilizers and animal manures is the main anthropogenic source of N2O emissions. In spite of their high relevance, we still have limited understanding of the complex underlying microbial processes that consume or produce N2O and their interactions with soil types, fertilizers (rate and types), plants, and other environmental variables. In a 2-year field experiment, we compared two important biogas crops in two different agro-ecological regions of northern Germany for their productivity and GHG emissions, using the closed-chamber technique and high time-resolution sampling. Silage maize, which is currently the most widespread crop grown for biogas fermentation purposes in Germany, was compared with an alternative bioenergy crop at each site. The three forms of nitrogen fertilizers/manures were given: calcium ammonium nitrate, cattle/pig slurry, and biogas residue. The greatest N2O flux activity occurred in the period of May–July in all crops and at both sites. Flux patterns indicated pronounced effects of soil moisture-soil mineral-N interactions which were also seen as causation of the higher N2O fluxes in the bioenergy crop maize compared to the other tested energy crops. However, the N2O emission per unit methane production (specific N2O emission) was clearly lower in soils planted with maize due to significantly higher methane hectare yield of maize. Our data suggest a linear relationship between increasing N input and increases in N2O emission in both years at site with sandy loam texture where highest N2O fluxes were measured. At sandy loam site, the percentage of applied N being emitted as N2O was 1.9 and 1.1xa0% in soils cropped with maize and 0.9 and 0.8xa0% in soils cropped with wheat during the investigation period 2007–2008 and 2008–2009, respectively. In contrast, at site with sandy soil texture, the percentage of applied N emitted as N2O was only 0.6 and 0.7xa0% in maize soils and 0.4 and 0.3xa0% in grassland during 2007–2008 and 2008–2009 period, respectively. Higher daily and annual N2O emissions at the sandy loam site were attributed to the finer soil texture and higher denitrification activity. The present study provides a very good basis for the assessment of direct emissions of greenhouse gases from relevant biogas crops in North-West Europe.


FEMS Microbiology Ecology | 2014

Windrow composting mitigated CH4 emissions: characterization of methanogenic and methanotrophic communities in manure management

Ruirui Chen; Yiming Wang; Shiping Wei; Wei Wang; Xiangui Lin

With increasing livestock breeding, methane (CH4 ) emissions from manure management will increasingly contribute more to atmospheric CH4 concentration. The dynamics of methanogens and methanotrophs have not yet been studied in the manure environment. The current study combines surface CH4 emissions with methanogenic and methanotrophic community analyses from two management practices, windrow composting (WCOM) and solid storage (SSTO). Our results showed that there was an c. 50% reduction of CH4 emissions with WCOM compared with SSTO over a 50-day period. A sharp decrease in the quantities of both methanogens and methanotrophs in WCOM suggested that CH4 mitigation was mainly due to decreased CH4 production rather than increased CH4 oxidation. Pyrosequencing analysis demonstrated that aeration caused a clear shift of dominant methanogens in the manure, with specifically a significant decrease in Methanosarcina and increase in Methanobrevibacter. The composition of methanogenic community was influenced by manure management and regulated CH4 production. A sharp increase in the quantity of methanotrophs in SSTO suggested that microbial CH4 oxidation is an important sink for the CH4 produced. The increased abundance of Methylococcaceae in SSTO suggested that Type I methanotrophs have an advantage in CH4 oxidation in occupying niches under low CH4 and high O2 conditions.


Scientific Reports | 2016

Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale

Haichuan Cao; Ruirui Chen; Libing Wang; Lanlan Jiang; Fen Yang; Shixue Zheng; Gejiao Wang; Xiangui Lin

Considering the extensive functional redundancy in microbial communities and great difficulty in elucidating it based on taxonomic structure, studies on the biogeography of soil microbial activity at large spatial scale are as important as microbial community structure. Eighty-four soil samples were collected across a region from south to north China (about 1,000u2009km) to address the questions if microbial activity displays biogeographic patterns and what are driving forces. These samples represented different soil types, land use and climate. Redundancy analysis and nonmetric multidimensional scaling clearly revealed that soil microbial activities showed distinct differentiation at different sites over a regional spatial scale, which were strongly affected by soil pH, total P, rainfall, temperature, soil type and location. In addition, microbial community structure was greatly influenced by rainfall, location, temperature, soil pH and soil type and was correlated with microbial activity to some extent. Our results suggest that microbial activities display a clear geographic pattern that is greatly altered by geographic distance and reflected by climate, soil pH and total P over large spatial scales. There are common (distance, climate, pH and soil type) but differentiated aspects (TP, SOC and N) in the biogeography of soil microbial community structure and activity.


Communications in Soil Science and Plant Analysis | 2011

Soil Total Nitrogen and Natural 15Nitrogen in Response to Long-Term Fertilizer Management of a Maize–Wheat Cropping System in Northern China

Ruirui Chen; Junli Hu; Klaus Dittert; Junhua Wang; Jiabao Zhang; Xiangui Lin

The Fengqiu long-term field experiment was established to examine effects of organic manure and mineral fertilizers on soil total nitrogen (N) and natural 15N abundance. Fertilizer regimes include organic manure (OM), one-half N from organic manure plus one-half N from mineral N fertilizer (1/2OMN), mineral fertilizers [N–phosphorus (P)–potassium (K), NP, NK, PK], and a control. Organic manure (OM and 1/2OMN) significantly increased soil total N and δ15N, which was expected as a great amount of the N applied remained in soils. Mineral NPK fertilizer and mineral NP fertilizer significantly increased total N and slightly increaed δ15N. Phosphorus-deficient fertilization (NK) and N-deficient fertilization (PK) had no effect on soil total N. Significantly greater δ15N was observed in the NK treatment as compared to the control, suggesting that considerable N was lost by ammonia (NH3) voltalization and denitrification in this P-deficiency fertilization regime.


International Journal of Systematic and Evolutionary Microbiology | 2014

Bacillus fengqiuensis sp. nov., isolated from a typical sandy loam soil under long-term fertilization.

Fei Zhao; Youzhi Feng; Ruirui Chen; Huayong Zhang; Junhua Wang; Xiangui Lin

A Gram-staining-positive, endospore-forming, moderately alkaliphilic bacterium, strain NPK15(T), was isolated from a typical sandy loam soil under long-term NPK fertilization in northern China and was subjected to a polyphasic taxonomic study. The diamino acid of the cell-wall peptidoglycan of strain NPK15(T) was found to be meso-diaminopimelic acid and the cell-wall sugars were xylose, glucose and traces of mannose. The only respiratory quinone found in strain NPK15(T) was menaquinone 7 (MK-7). The major cellular fatty acids were iso-C(15u200a:u200a0), anteiso-C(15u200a:u200a0), C(16u200a:u200a0) and C(16u200a:u200a1)ω6c/C(16u200a:u200a1)ω7c. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Phylogenetic analysis of the strain based on its 16S rRNA gene sequence showed that it was related most closely to Bacillus thaonhiensis KACC 17216 (99.59%), B. songklensis KCTC 13881(T) (99.52%) and B. abyssalis CCTCC AB 2012074(T) (99.00%). DNA-DNA hybridization results indicated that the strain was distinct from other species of the genus Bacillus, the degree of relatedness being 35.4% with B. abyssalis CCTCC AB 2012074(T), 39.7% with B. songklensis KCTC 13881(T) and 51.2% with B. thaonhiensis KACC 17216. The DNA G+C content of strain NPK15(T) was 45.5 mol%. Phenotypic, chemotaxonomic and molecular analyses identified strain NPK15(T) as a member of a novel species of the genus Bacillus, for which the name Bacillus fengqiuensis sp. nov. is proposed. The type strain is NPK15(T) (u200a=u200aDSM 26745(T)u200a=u200aCCTCC AB 2013156(T)).

Collaboration


Dive into the Ruirui Chen's collaboration.

Top Co-Authors

Avatar

Xiangui Lin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Youzhi Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Junhua Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Junli Hu

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Klaus Dittert

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Jiabao Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhongwang Jing

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiping Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fei Zhao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge