Ruiyun Zhang
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruiyun Zhang.
Journal of Biomedical Materials Research | 1999
Peter X. Ma; Ruiyun Zhang
Biodegradable polymers have been widely used as scaffolding materials to regenerate new tissues. To mimic natural extracellular matrix architecture, a novel highly porous structure, which is a three-dimensional interconnected fibrous network with a fiber diameter ranging from 50 to 500 nm, has been created from biodegradable aliphatic polyesters in this work. A porosity as high as 98.5% has been achieved. These nano-fibrous matrices were prepared from the polymer solutions by a procedure involving thermally induced gelation, solvent exchange, and freeze-drying. The effects of polymer concentration, thermal annealing, solvent exchange, and freezing temperature before freeze-drying on the nano-scale structures were studied. In general, at a high gelation temperature, a platelet-like structure was formed. At a low gelation temperature, the nano-fibrous structure was formed. Under the conditions for nano-fibrous matrix formation, the average fiber diameter (160-170 nm) did not change statistically with polymer concentration or gelation temperature. The porosity decreased with polymer concentration. The mechanical properties (Youngs modulus and tensile strength) increased with polymer concentration. A surface-to-volume ratio of the nano-fibrous matrices was two to three orders of magnitude higher than those of fibrous nonwoven fabrics fabricated with the textile technology or foams fabricated with a particulate-leaching technique. This synthetic analogue of natural extracellular matrix combined the advantages of synthetic biodegradable polymers and the nano-scale architecture of extracellular matrix, and may provide a better environment for cell attachment and function.
Journal of Biomedical Materials Research | 1999
Ruiyun Zhang; Peter X. Ma
Tissue engineering has shown great promise for creating biological alternatives for implants. In this approach, scaffolding plays a pivotal role. Hydroxyapatite mimics the natural bone mineral and has shown good bone-bonding properties. This paper describes the preparation and morphologies of three-dimensional porous composites from poly(L-lactic acid) (PLLA) or poly(D,L-lactic acid-co-glycolic acid) (PLGA) solution and hydroxyapatite (HAP). A thermally induced phase separation technique was used to create the highly porous composite scaffolds for bone-tissue engineering. Freeze drying of the phase-separated polymer/HAP/solvent mixtures produced hard and tough foams with a co-continuous structure of interconnected pores and a polymer/HAP composite skeleton. The microstructure of the pores and the walls was controlled by varying the polymer concentration, HAP content, quenching temperature, polymer, and solvent utilized. The porosity increased with decreasing polymer concentration and HAP content. Foams with porosity as high as 95% were achieved. Pore sizes ranging from several microns to a few hundred microns were obtained. The composite foams showed a significant improvement in mechanical properties over pure polymer foams. They are promising scaffolds for bone-tissue engineering.
Journal of Biomedical Materials Research | 2001
Peter X. Ma; Ruiyun Zhang; Guozhi Xiao; Renny T. Franceschi
Engineering new bone tissue with cells and a synthetic extracellular matrix (scaffolding) represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). In the present work, highly porous poly(L-lactic acid) (PLLA) and PLLA/hydroxyapatite (HAP) composite scaffolds were prepared with a thermally induced phase separation technique. The scaffolds were seeded with osteoblastic cells and cultured in vitro. In the pure PLLA scaffolds, the osteoblasts attached primarily on the outer surface of the polymer. In contrast, the osteoblasts penetrated deep into the PLLA/HAP scaffolds and were uniformly distributed. The osteoblast survival percentage in the PLLA/HAP scaffolds was superior to that in the PLLA scaffolds. The osteoblasts proliferated in both types of the scaffolds, but the cell number was always higher in the PLLA/HAP composite scaffolds during 6 weeks of in vitro cultivation. Bone-specific markers (mRNAs encoding bone sialoprotein and osteocalcin) were expressed more abundantly in the PLLA/HAP composite scaffolds than in the PLLA scaffolds. The new tissue increased continuously in the PLLA/HAP composite scaffolds, whereas new tissue formed only near the surface of pure PLLA scaffolds. These results demonstrate that HAP imparts osteoconductivity and the highly porous PLLA/HAP composite scaffolds are superior to pure PLLA scaffolds for bone tissue engineering.
Journal of Biomedical Materials Research | 2001
Peter X. Ma; Ruiyun Zhang
It is a relatively new approach to generate tissues with mammalian cells and scaffolds (temporary synthetic extracellular matrices). Many tissues, such as nerve, muscle, tendon, ligament, blood vessel, bone, and teeth, have tubular or fibrous bundle architectures and anisotropic properties. In this work, we have designed and fabricated highly porous scaffolds from biodegradable polymers with a novel phase-separation technique to generate controllable parallel array of microtubular architecture. Porosity as high as 97% has been achieved. The porosity, diameter of the microtubules, the tubular morphology, and their orientation are controlled by the polymer concentration, solvent system, and temperature gradient. The mechanical properties of these scaffolds are anisotropic. Osteoprogenitor cells are seeded in these three-dimensional scaffolds and cultured in vitro. The cell distribution and the neo-tissue organization are guided by the microtubular architecture. The fabrication technique can be applied to a variety of polymers, therefore the degradation rate and cell--matrix interactions can be controlled by the chemical composition of the polymers and the incorporation of bioactive moieties. These microtubular scaffolds may be used to engineer a variety of tissues with anisotropic architecture and properties.
Journal of Biomedical Materials Research | 2000
Ruiyun Zhang; Peter X. Ma
Scaffolding plays a pivotal role in tissue engineering. To mimic the architecture of a natural extracellular matrix component-collagen, nona-fibrous matrices have been created with synthetic biodegradable polymers in our laboratory using a phase-separation technique. To improve the cell seeding, distribution, mass transport, and new tissue organization, three-dimensional macroporous architectures are built in the nano-fibrous matrices. Water-soluble porogen materials are first fabricated into three-dimensional negative replicas of the desired macroporous architectures. Polymer solutions are then cast over the porogen assemblies in a mold, and are thermally phase-separated to form nano-fibrous matrices. The porogen materials are leached out with water to finally form the synthetic nano-fibrous extracellular matrices with predesigned macroporous architectures. In this way, synthetic polymer matrices are created with architectural features at several levels, including the anatomical shape of the matrix, macroporous elements (100 microm to millimeters), interfiber distance (microns), and the diameter of the fibers (50-500 nm). These scaffolding materials circumvent the concerns of pathogen transmission and immuno-rejection associated with natural collagen. With the flexibility in the design of chemical structure, molecular weight, architecture, degradation rate, and mechanical properties, these novel synthetic matrices may serve as superior scaffolding for tissue engineering.
Journal of Biomedical Materials Research | 1999
Ruiyun Zhang; Peter X. Ma
Biomaterials | 2007
Kyung Mi Woo; Jihye Seo; Ruiyun Zhang; Peter X. Ma
Macromolecular Bioscience | 2004
Ruiyun Zhang; Peter X. Ma
Archive | 1999
Peter X. Ma; Ruiyun Zhang
Archive | 2002
Peter X. Ma; Ruiyun Zhang