Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rumi Kaida is active.

Publication


Featured researches published by Rumi Kaida.


Plant Physiology | 2010

Potential Role for Purple Acid Phosphatase in the Dephosphorylation of Wall Proteins in Tobacco Cells

Rumi Kaida; Satoshi Serada; Naoko Norioka; Shigemi Norioka; Lutz Neumetzler; Markus Pauly; Javier Sampedro; Ignacio Zarra; Takahisa Hayashi; Takako Kaneko

It is not yet known whether dephosphorylation of proteins catalyzed by phosphatases occurs in the apoplastic space. In this study, we found that tobacco (Nicotiana tabacum) purple acid phosphatase could dephosphorylate the phosphoryl residues of three apoplastic proteins, two of which were identified as α-xylosidase and β-glucosidase. The dephosphorylation and phosphorylation of recombinant α-xylosidase resulted in a decrease and an increase in its activity, respectively, when xyloglucan heptasaccharide was used as a substrate. Attempted overexpression of the tobacco purple acid phosphatase NtPAP12 in tobacco cells not only decreased the activity levels of the glycosidases but also increased levels of xyloglucan oligosaccharides and cello-oligosaccharides in the apoplast during the exponential phase. We suggest that purple acid phosphatase controls the activity of α-xylosidase and β-glucosidase, which are responsible for the degradation of xyloglucan oligosaccharides and cello-oligosaccharides in the cell walls.


Molecular Plant | 2009

Xyloglucan for Generating Tensile Stress to Bend Tree Stem

Kei'ichi Baba; Yong Woo Park; Tomomi Kaku; Rumi Kaida; Miyuki Takeuchi; Masato Yoshida; Yoshihiro Hosoo; Yasuhisa Ojio; Takashi Okuyama; Toru Taniguchi; Yasunori Ohmiya; Teiji Kondo; Ziv Shani; Oded Shoseyov; Tatsuya Awano; Satoshi Serada; Naoko Norioka; Shigemi Norioka; Takahisa Hayashi

In response to environmental variation, angiosperm trees bend their stems by forming tension wood, which consists of a cellulose-rich G (gelatinous)-layer in the walls of fiber cells and generates abnormal tensile stress in the secondary xylem. We produced transgenic poplar plants overexpressing several endoglycanases to reduce each specific polysaccharide in the cell wall, as the secondary xylem consists of primary and secondary wall layers. When placed horizontally, the basal regions of stems of transgenic poplars overexpressing xyloglucanase alone could not bend upward due to low strain in the tension side of the xylem. In the wild-type plants, xyloglucan was found in the inner surface of G-layers during multiple layering. In situ xyloglucan endotransglucosylase (XET) activity showed that the incorporation of whole xyloglucan, potentially for wall tightening, began at the inner surface layers S1 and S2 and was retained throughout G-layer development, while the incorporation of xyloglucan heptasaccharide (XXXG) for wall loosening occurred in the primary wall of the expanding zone. We propose that the xyloglucan network is reinforced by XET to form a further connection between wall-bound and secreted xyloglucans in order to withstand the tensile stress created within the cellulose G-layer microfibrils.


Molecular Plant | 2009

Loosening xyloglucan accelerates the enzymatic degradation of cellulose in wood.

Rumi Kaida; Tomomi Kaku; Kei'ichi Baba; Masafumi Oyadomari; Takashi Watanabe; Koji Nishida; Toshiji Kanaya; Ziv Shani; Oded Shoseyov; Takahisa Hayashi

In order to create trees in which cellulose, the most abundant component in biomass, can be enzymatically hydrolyzed highly for the production of bioethanol, we examined the saccharification of xylem from several transgenic poplars, each overexpressing either xyloglucanase, cellulase, xylanase, or galactanase. The level of cellulose degradation achieved by a cellulase preparation was markedly greater in the xylem overexpressing xyloglucanase and much greater in the xylems overexpressing xylanase and cellulase than in the xylem of the wild-type plant. Although a high degree of degradation occurred in all xylems at all loci, the crystalline region of the cellulose microfibrils was highly degraded in the xylem overexpressing xyloglucanase. Since the complex between microfibrils and xyloglucans could be one region that is particularly resistant to cellulose degradation, loosening xyloglucan could facilitate the enzymatic hydrolysis of cellulose in wood.


Plant Physiology | 2009

Activation of β-Glucan Synthases by Wall-Bound Purple Acid Phosphatase in Tobacco Cells

Rumi Kaida; Yumi Satoh; Vincent Bulone; Yohko Yamada; Tomomi Kaku; Takahisa Hayashi; Takako Kaneko

Wall-bound purple acid phosphatases have been shown to be potentially involved in the regulation of plant cell growth. The aim of this work was to further investigate the function of one of these phosphatases in tobacco (Nicotiana tabacum), NtPAP12, using transgenic cells overexpressing the enzyme. The transgenic cells exhibited a higher level of phosphatase activity in their walls. The corresponding protoplasts regenerating a cell wall exhibited a higher rate of β-glucan synthesis and cellulose deposition was increased in the walls of the transgenic cells. A higher level of plasma membrane glucan synthase activities was also measured in detergent extracts of membrane fractions from the transgenic line, while no activation of Golgi-bound glycan synthases was detected. Enzymatic hydrolysis and methylation analysis were performed on the products synthesized in vitro by the plasma membrane enzymes from the wild-type and transgenic lines extracted with digitonin and incubated with radioactive UDP-glucose. The data showed that the glucans consisted of callose and cellulose and that the amount of each glucan synthesized by the enzyme preparation from the transgenic cells was significantly higher than in the case of the wild-type cells. The demonstration that callose and cellulose synthases are activated in cells overexpressing the wall-bound phosphatase NtPAP12 suggests a regulation of these carbohydrate synthases by a phosphorylation/dephosphorylation process, as well as a role of wall-bound phosphatases in the regulation of cell wall biosynthesis.


Plant Physiology | 2008

Overexpression of Poplar Cellulase Accelerates Growth and Disturbs the Closing Movements of Leaves in Sengon

Sri Hartati; Enny Sudarmonowati; Yong Woo Park; Tomomi Kaku; Rumi Kaida; Kei'ichi Baba; Takahisa Hayashi

In this study, poplar (Populus alba) cellulase (PaPopCel1) was overexpressed in a tropical Leguminosae tree, sengon (Paraserianthes falcataria), by the Agrobacterium tumefaciens method. PaPopCel1 overexpression increased the length and width of stems with larger leaves, which showed a moderately higher density of green color than leaves of the wild type. The pairs of leaves on the transgenic plants closed more slowly during sunset than those on the wild-type plants. When main veins from each genotype were excised and placed on a paper towel, however, the leaves of the transgenic plants closed more rapidly than those of the wild-type plant. Based on carbohydrate analyses of cell walls, the leaves of the transgenic plants contained less wall-bound xyloglucan than those of the wild-type plants. In situ xyloglucan endotransglucosylase activity showed that the incorporation of whole xyloglucan, potentially for wall tightening, occurred in the parenchyma cells (motor cells) of the petiolule pulvinus attached to the main vein, although the transgenic plant incorporated less whole xyloglucan than the wild-type plant. These observations support the hypothesis that the paracrystalline sites of cellulose microfibrils are attacked by poplar cellulase, which loosens xyloglucan intercalation, resulting in an irreversible wall modification. This process could be the reason why the overexpression of poplar cellulase both promotes plant growth and disturbs the biological clock of the plant by altering the closing movements of the leaves of the plant.


Phytochemistry | 2008

Purple acid phosphatase in the walls of tobacco cells

Rumi Kaida; Takahisa Hayashi; Takako Kaneko

Purple acid phosphatase isolated from the walls of tobacco cells appears to be a 220kDa homotetramer composed of 60kDa subunits, which is purple in color and which contains iron as its only metal ion. Although the phosphatase did not require dithiothreitol for activity and was not inhibited by phenylarsine oxide, the enzyme showed a higher catalytic efficiency (k(cat)/K(m)) for phosphotyrosine-containing peptides than for other substrates including p-nitrophenyl-phosphate and ATP. The phosphatase formed as a 120kDa dimer in the cytoplasm and as a 220kDa tetramer in the walls, where Brefeldin A blocked its secretion during wall regeneration. According to our double-immunofluorescence labeling results, the enzyme might be translocated through the Golgi apparatus to the walls at the interphase and to the cell plate during cytokinesis.


Molecular Plant | 2010

Acceleration of Cell Growth by Xyloglucan Oligosaccharides in Suspension-Cultured Tobacco Cells

Rumi Kaida; Satoko Sugawara; Kanako Negoro; Hisae Maki; Takahisa Hayashi; Takako Kaneko

The incorporation of xyloglucan oligosaccharide (XXXG) into the walls of suspension-cultured tobacco cells accelerated cell expansion followed by cell division, changed cell shape from cylindrical to spherical, decreased cell size, and caused cell aggregation. Fluorescent XXXG added to the culture medium was found to be incorporated into the surface of the entire wall, where strong incorporation occurred not only on the surface, but also in the interface walls between cells during cell division. Cell expansion was always greater in the transverse direction than in the longitudinal direction and then, immediately, expansion led to cell division in the presence of XXXG; this process might result in the high level of cell aggregation seen in cultured tobacco cells. We concluded that the integration of this oligosaccharide into the walls could accelerate not only cell expansion, but also cell division in cultured cells.


Russian Journal of Plant Physiology | 2010

Loosening xyloglucan prevents tensile stress in tree stem bending but accelerates the enzymatic degradation of cellulose

Takahisa Hayashi; Rumi Kaida; Tomomi Kaku; Kei'ichi Baba

In response to environmental variation, xyloglucan could fix the microfibrils to the inner surface of the wall to withstand the tensile stress generated within the G-layer. This would explain why the basal regions of stems of transgenic poplars overexpressing xyloglucanase could not bend upward. This finding has ramifications for the production of bioethanol, which requires tree cellulose to be enzymatically hydrolyzed. The level of cellulose degradation with enzymes was markedly increased in the xylem overexpressing xyloglucanase. We propose that xyloglucan serves as a key hemicellulose and a tightening tether of cellulose microfibrils in the secondary walls.


Journal of Wood Science | 2009

Enzymatic saccharification and ethanol production of Acacia mangium and Paraserianthes falcataria wood, and Elaeis guineensis trunk

Rumi Kaida; Tomomi Kaku; Kei’ichi Baba; Masafumi Oyadomari; Takashi Watanabe; Sri Hartati; Enny Sudarmonowati; Takahisa Hayashi

We examined the saccharification and fermentation of meals from Acacia mangium wood, Paraserianthes falcataria wood, and Elaeis guineensis trunk. The levels of enzymatic hydrolysis of cellulose and ethanol production were highest for P. falcataria wood and lowest for A. mangium wood. Ultrasonication pretreatment of meal further increased the rates of hydrolysis and ethanol production in meal from P. falcataria wood. Through this pretreatment, hemicelluloses (xylan and xyloglucan) and cellulose were released in the meal from P. falcataria wood. Loosening of hemicellulose associations can be expected to make P. falcataria wood more useful for bioethanol production.


Journal of Wood Science | 2011

Improvement of fermentable sugar yields of mangium through transgenic overexpression of xyloglucanase

Tomomi Kaku; Rumi Kaida; Kei’ichi Baba; Sri Hartati; Enny Sudarmonowati; Takahisa Hayashi

Recalcitrance to saccharifi cation is a major limiting factor of the conversion of lignocellulosic biomass to ethanol. Levels of wood saccharification and subsequent ethanol production were higher in transgenic mangium (Acacia mangium) trees overexpressing xyloglucanase than in wild-type plants, even after delignification of the wood. We propose that a decrease in the quantity of xyloglucan that is intercalated into cellulose microfibrils could facilitate the process of saccharification.

Collaboration


Dive into the Rumi Kaida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takako Kaneko

Japan Women's University

View shared research outputs
Top Co-Authors

Avatar

Enny Sudarmonowati

Indonesian Institute of Sciences

View shared research outputs
Top Co-Authors

Avatar

Sri Hartati

Indonesian Institute of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge