Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rumin Zhang is active.

Publication


Featured researches published by Rumin Zhang.


Cancer Discovery | 2013

Discovery of a Novel ERK Inhibitor with Activity in Models of Acquired Resistance to BRAF and MEK Inhibitors

Morris Ej; Jha S; Restaino Cr; Priya Dayananth; Hugh Zhu; Alan Cooper; Carr D; Yongqi Deng; Jin W; Stuart Black; Brian Long; Liu J; Dinunzio E; William T. Windsor; Rumin Zhang; Zhao S; Angagaw Mh; Pinheiro Em; Jagdish Desai; Li Xiao; Gerald W. Shipps; Alan Hruza; James Wang; Joseph Kelly; Sunil Paliwal; Xiaolei Gao; Babu Bs; Liang Zhu; Daublain P; Zhang L

The high frequency of activating RAS or BRAF mutations in cancer provides strong rationale for targeting the mitogen-activated protein kinase (MAPK) pathway. Selective BRAF and MAP-ERK kinase (MEK) inhibitors have shown clinical efficacy in patients with melanoma. However, the majority of responses are transient, and resistance is often associated with pathway reactivation of the extracellular signal-regulated kinase (ERK) signaling pathway. Here, we describe the identification and characterization of SCH772984, a novel and selective inhibitor of ERK1/2 that displays behaviors of both type I and type II kinase inhibitors. SCH772984 has nanomolar cellular potency in tumor cells with mutations in BRAF, NRAS, or KRAS and induces tumor regressions in xenograft models at tolerated doses. Importantly, SCH772984 effectively inhibited MAPK signaling and cell proliferation in BRAF or MEK inhibitor-resistant models as well as in tumor cells resistant to concurrent treatment with BRAF and MEK inhibitors. These data support the clinical development of ERK inhibitors for tumors refractory to MAPK inhibitors.


Biochemical and Biophysical Research Communications | 2008

PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide

LiXin Shan; Ling Pang; Rumin Zhang; Nicholas J. Murgolo; Hong Lan; Joseph A. Hedrick

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low density lipoprotein receptor (LDLR) and induces its internalization and degradation. PCSK9 binding to LDLR is mediated through the LDLR epidermal growth factor-like repeat A (EGF-A) domain. We show for the first time that an EGF-A peptide inhibits PCSK9-mediated degradation of LDLR in HepG2 cells. In addition to LDLR, we show that PCSK9 also binds directly to ApoER2 and mouse VLDLR. Importantly, binding of PCSK9 to either LDLR or mouse VLDLR was effectively inhibited by EGF-A while binding to ApoER2 was less affected. In contrast, LDL receptor-associated protein (RAP), which interacts with LDL receptor repeat type A (LA) domains, inhibited PCSK9 binding to ApoER2 with greater efficacy than either LDLR or mVLDLR. These data demonstrate that while PCSK9 binds several receptors via its EGF-A binding domain, additional contacts with other receptor domains are also involved.


Nature | 2015

Selective small-molecule inhibition of an RNA structural element.

John A. Howe; Hao Wang; Thierry O. Fischmann; Carl J. Balibar; Li Xiao; Andrew Galgoci; Juliana C. Malinverni; Todd W. Mayhood; Artjohn Villafania; Ali Nahvi; Nicholas J. Murgolo; Christopher M. Barbieri; Paul A. Mann; Donna Carr; Ellen Xia; Paul Zuck; Daniel Riley; Ronald E. Painter; Scott S. Walker; Brad Sherborne; Reynalda de Jesus; Weidong Pan; Michael A. Plotkin; Jin Wu; Diane Rindgen; John H. Cummings; Charles G. Garlisi; Rumin Zhang; Payal R. Sheth; Charles Gill

Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.


Bioorganic & Medicinal Chemistry Letters | 2002

Azapeptides as inhibitors of the hepatitis C virus NS3 serine protease.

Rumin Zhang; James Durkin; William T. Windsor

Truncation and substitution SAR studies of azapeptide-based inhibitors of the Hepatitis C virus (HCV) NS3 serine protease have been performed. These azapeptides were designed from the HCV polyproteins NS5A-NS5B trans cleavage junction and contained an azaamino acid residue at the P1 position. These azapeptides exhibited predominantly non-acylating, competitive inhibition, contrary to classical azapeptides.


Proteins | 2001

Effect of naturally occurring active site mutations on hepatitis C virus NS3 protease specificity

Brian M. Beyer; Rumin Zhang; Zhi Hong; Vincent Madison; Bruce A. Malcolm

A comparison of the DNA sequences from all available genotypes of HCV indicate that the active site residues of the NS3 protease are strictly conserved with the exception of positions 123 and 168, which border the S4 subsite. In genotype 3, the canonic arginine and aspartic acid have been replaced with threonine and glutamine, respectively. To determine if these differences contribute to an altered specificity, we characterized single‐chain NS3 proteases from strains 1a, 1b, and 3a with peptide substrates and product inhibitors on the basis of the natural cleavage junction sequences, in addition to polyprotein substrates derived from the 1a strain. No statistically significant differences in specificity were observed. To demonstrate that the active sites were actually different, we generated and evaluated peptide substrates with unnatural extended side‐chains. These studies confirmed that there are measurable differences between the NS3 proteases of genotypes 1 and 3. Specifically, a 5‐fold difference in Ki was observed between the proteases from genotypes 1 and 3 when a D‐Glu occupied P5, and a 30‐fold difference was seen when this position contained a D‐homoglutamate. The contribution of residues 123 and 168 toward the altered specificity was then evaluated individually by site‐directed mutagenesis. These mutants showed that potency differences within this series could be attributed to the residue that occupied position 123 of the protease. Modeling these unnatural substrate/mutant protease interactions, on the basis of cocrystal structures of enzyme–substrate complexes, provides a structural basis for these observations. Proteins 2001;43:82–88.


Journal of Hepatology | 2000

Cross-genotypic interaction between hepatitis C virus NS3 protease domains and NS4A cofactors

Jacquelyn Wright-Minogue; Nanhua Yao; Rumin Zhang; Nancy Butkiewicz; Bahige M. Baroudy; Joseph Lau; Zhi Hong

BACKGROUND/AIMS Hepatitis C virus (HCV) nonstructural protein 3 (NS3) protease requires NS4A as a cofactor. This cofactor activity has been mapped to the central region of NS4A which interacts with the N-terminus of NS3 protease. To investigate whether this interaction is conserved among different genotypes of HCV cross-genotypic characterization were performed to delineate the importance of NS4A cofactor function in relation to the molecular evolution of HCV METHODS: Active NS3 protease domains of genotype 1-3 (representing five subtypes: la, 1b, 2a, 2b and 3a) were produced and purified from bacterial cells. NS4A cofactor-dependent in vitro trans cleavage assays were established using the in vitro translated recombinant protein substrates. These substrates contained the junction site of NS4A/NS4B, NS4B/NS5A or NS5A/NS5B. RESULTS Our data revealed that NS3 proteases cross-interacted with NS4A cofactors derived from different genotypes, although the genotype 2 cofactor was less efficient, which could be due to greater genetic variations in this region. Furthermore, the corresponding region in hepatitis G virus (HGV) NS4A was found to provide weak cofactor activity for HCV NS3 protease. Surprisingly, a synthetic substrate peptide from the NS4B/NS5A junction was also found to enhance HCV NS3 protease activity in a dose-dependent manner. CONCLUSION Our study suggests that the NS4A cofactor function is well conserved among HCV It is likely that other HCV-related viruses may have developed similar strategies to regulate their protease activity.


RNA Biology | 2016

Atomic resolution mechanistic studies of ribocil: A highly selective unnatural ligand mimic of the E. coli FMN riboswitch.

John A. Howe; Li Xiao; Thierry O. Fischmann; Hao Wang; Haifeng Tang; Artjohn Villafania; Rumin Zhang; Christopher M. Barbieri; Terry Roemer

ABSTRACT Bacterial riboswitches are non-coding RNA structural elements that direct gene expression in numerous metabolic pathways. The key regulatory roles of riboswitches, and the urgent need for new classes of antibiotics to treat multi-drug resistant bacteria, has led to efforts to develop small-molecules that mimic natural riboswitch ligands to inhibit metabolic pathways and bacterial growth. Recently, we reported the results of a phenotypic screen targeting the riboflavin biosynthesis pathway in the Gram-negative bacteria Escherichia coli that led to the identification of ribocil, a small molecule inhibitor of the flavin mononucleotide (FMN) riboswitch controlling expression of this biosynthetic pathway. Although ribocil is structurally distinct from FMN, ribocil functions as a potent and highly selective synthetic mimic of the natural ligand to repress riboswitch-mediated ribB gene expression and inhibit bacterial growth both in vitro and in vivo. Herein, we expand our analysis of ribocil; including mode of binding in the FMN binding pocket of the riboswitch, mechanisms of resistance and structure-activity relationship guided efforts to generate more potent analogs.


Bioorganic & Medicinal Chemistry Letters | 2014

Modulating the interaction between CDK2 and cyclin A with a quinoline-based inhibitor

Yongqi Deng; Gerald W. Shipps; Lianyun Zhao; M. Arshad Siddiqui; Janeta Popovici-Muller; Patrick J. Curran; Jose S. Duca; Alan Hruza; Thierry O. Fischmann; Vincent Madison; Rumin Zhang; Charles Wayne Mcnemar; Todd Mayhood; Rosalinda Syto; Allen Annis; Paul Kirschmeier; Emma M. Lees; David Parry; William T. Windsor

A new class of quinoline-based kinase inhibitors has been discovered that both disrupt cyclin dependent 2 (CDK2) interaction with its cyclin A subunit and act as ATP competitive inhibitors. The key strategy for discovering this class of protein-protein disrupter compounds was to screen the monomer CDK2 in an affinity-selection/mass spectrometry-based technique and to perform secondary assays that identified compounds that bound only to the inactive CDK2 monomer and not the active CDK2/cyclin A heterodimer. Through a series of chemical modifications the affinity (Kd) of the original hit improved from 1 to 0.005μM.


Methods of Molecular Biology | 2013

In Vitro Kinetic Profiling of Hepatitis C Virus NS3 Protease Inhibitors by Progress Curve Analysis

Rumin Zhang; William T. Windsor

Kinetic profiling of drug binding to its target reveals important mechanistic parameters including drug-target residence time. In this chapter, we focus on global progress curve analysis as a convenient method for kinetic profiling. Detailed guidelines with pros and cons for various experimental designs and data analysis are provided. Kinetic profiling of Boceprevir and Telaprevir is illustrated.


Bioorganic & Medicinal Chemistry Letters | 2016

Efforts towards the optimization of a bi-aryl class of potent IRAK4 inhibitors.

Jennifer Hanisak; W.M. Seganish; William T. McElroy; Huadong Tang; Rumin Zhang; H.C. Tsui; Thierry O. Fischmann; Deen Tulshian; Jim Tata; Christopher Sondey; Kristine Devito; James Fossetta; Charles G. Garlisi; Daniel Lundell; Xiaoda Niu

IRAK4 has been identified as potential therapeutic target for inflammatory and autoimmune diseases. Herein we report the identification and initial SAR studies of a new class of pyrazole containing IRAK4 inhibitors designed to expand chemical diversity and improve off target activity of a previously identified series. These compounds maintain potent IRAK4 activity and desirable ligand efficiency. Rat clearance and a variety of off target activities were also examined, resulting in encouraging data with tractable SAR.

Collaboration


Dive into the Rumin Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge