Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruo-Lan Xiang is active.

Publication


Featured researches published by Ruo-Lan Xiang.


Journal of Cell Science | 2015

Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells.

Xin Cong; Yan Zhang; Jing Li; Mei Mei; Chong Ding; Ruo-Lan Xiang; L. Zhang; Yun Wang; Li-Ling Wu; Guang-Yan Yu

ABSTRACT The epithelial cholinergic system plays an important role in water, ion and solute transport. Previous studies have shown that activation of muscarinic acetylcholine receptors (mAChRs) regulates paracellular transport of epithelial cells; however, the underlying mechanism is still largely unknown. Here, we found that mAChR activation by carbachol and cevimeline reduced the transepithelial electrical resistance (TER) and increased the permeability of paracellular tracers in rat salivary epithelial SMG-C6 cells. Carbachol induced downregulation and redistribution of claudin-4, but not occludin or ZO-1 (also known as TJP1). Small hairpin RNA (shRNA)-mediated claudin-4 knockdown suppressed, whereas claudin-4 overexpression retained, the TER response to carbachol. Mechanistically, the mAChR-modulated claudin-4 properties and paracellular permeability were triggered by claudin-4 phosphorylation through ERK1/2 (also known as MAPK3 and MAPK1, respectively). Mutagenesis assay demonstrated that S195, but not S199, S203 or S207, of claudin-4, was the target for carbachol. Subsequently, the phosphorylated claudin-4 interacted with β-arrestin2 and triggered claudin-4 internalization through the clathrin-dependent pathway. The internalized claudin-4 was further degraded by ubiquitylation. Taken together, these findings suggested that claudin-4 is required for mAChR-modulated paracellular permeability of epithelial cells through an ERK1/2, β-arrestin2, clathrin and ubiquitin-dependent signaling pathway. Highlighted Article: The epithelial cholinergic system activates a signaling pathway that regulates paracellular permeability by modulating the content and distribution of the tight junction protein claudin-4.


Laboratory Investigation | 2012

Activation of transient receptor potential vanilloid subtype 1 increases expression and permeability of tight junction in normal and hyposecretory submandibular gland

Xin Cong; Yan Zhang; Liang Shi; Ning-Yan Yang; Chong Ding; Jing Li; Qian-Wen Ding; Yun-Chao Su; Ruo-Lan Xiang; Li-Ling Wu; Guang-Yan Yu

Tight junction (TJ) is an important structure that regulates material transport through the paracellular pathway across the epithelium, but its significance in salivary physiology and pathogenesis of salivary dysfunctional diseases is not fully understood. We previously demonstrated that a functional transient receptor potential vanilloid subtype 1 (TRPV1) expresses in submandibular gland (SMG). However, association of TRPV1-induced saliva secretion with TJ remains unknown. Here we explored the effect of TRPV1 activation on expression and function of TJ of rabbit SMG in vitro and in vivo. RT-PCR and western blot analysis revealed that capsaicin upregulated expression of zonula occludin-1 (ZO-1), claudin (Cldn)-3, and -11, but not Cldn-1, -2, -4, -5, and -7 in cultured SMG cells. Capsaicin also increased the entering of 4 kDa FITC-dextran into the acinar lumen, induced redistribution of cytoskeleton F-actin under confocal microscope, and these effects were abolished by preincubation of capsazepine, a TRPV1 antagonist, indicating that activation of TRPV1 increases expression and permeability of TJ in SMG. Additionally, in a hyposecretory model induced by rabbit SMG transplantation, the expression of ZO-1, Cldn-3, and -11 was decreased, whereas other TJs remained unaltered. The structure of TJ was impaired and the width of apical TJs was reduced under transmission electron microscope, concomitant with diminished immunofluorescence of F-actin in peri-apicolateral region, indicating impaired TJ expression and decreased paracellular permeability in the transplanted SMG. Moreover, topical capsaicin cream increased secretion, decreased TJ structural injury, reversed TJ expression levels, and protected F-actin morphology from disarrangement in transplanted SMGs. These data provide the first evidence to demonstrate that TJ components, particularly ZO-1, Cldn-3, and -11 have important roles in secretion of SMG under both physiological and pathophysiological conditions. The injury in TJ integrity was involved in the hypofunctional SMGs, and TRPV1 might be a potential target to improve saliva secretion through modulating expression and function of TJs.


PLOS ONE | 2013

Adiponectin Increases Secretion of Rat Submandibular Gland via Adiponectin Receptors-Mediated AMPK Signaling

Chong Ding; Li Li; Yun-Chao Su; Ruo-Lan Xiang; Xin Cong; Hong-Kui Yu; Sheng-Lin Li; L.L. Wu; Guang-Yan Yu

Adiponectin and adiponectin receptors (AdipoR1/2) are expressed in various tissues and are involved in the regulation of multiple functions such as energy metabolism and inflammatory responses. However, the effect of adiponectin and AdipoRs in submandibular glands has not been fully evaluated. In the present study, we found that mRNA and protein of both adiponectin and AdipoR1/2 were expressed in rat submandibular glands and in the SMG-C6 cell line, as evidenced by RT-PCR and Western blot analysis. Immunofluorescence staining showed that adiponectin was diffused in the cytoplasm, while AdipoR1/2 was concentrated in the membrane of acinar cells. Saliva flow was significantly increased by full length adiponectin (fAd) or globular adiponectin (gAd) perfusion in isolated rat submandibular glands. 5-Aminoimidazole-4-carboxamide-1-4-ribofuranoside (AICAR), an adenosine monophosphate activated protein kinase (AMPK) activator, also increased saliva secretion. fAd, gAd, and AICAR all increased the average width of apical tight junctions in perfused submandibular glands, and decreased transepithelial electrical resistance (TER) in SMG-C6 cells, suggesting that adiponectin promoted secretion by modulating paracellular permeability. fAd and gAd increased p-AMPK levels, while AraA, an AMPK antagonist, abolished fAd- and gAd-induced changes in secretion, tight junction ultrastructure, and TER. Moreover, both AdipoR1 and AdipoR2 were required for fAd- or gAd-induced p-AMPK and TER responses, suggesting from their inhibition following AdipoR1 or AdipoR2 knockdown, and co-knockdown of AdipoRs by RNA interference. Our results suggest that adiponectin functions as a promoter of salivary secretion in rat submandibular glands via activation of AdipoRs, AMPK, and paracellular permeability.


Cellular Signalling | 2015

Claudin-3 is required for modulation of paracellular permeability by TNF-α through ERK1/2/slug signaling axis in submandibular gland

Mei Mei; Ruo-Lan Xiang; Xin Cong; Yan Zhang; Jing Li; Xia Yi; Kyungpyo Park; Jingyan Han; Li-Ling Wu; Guang-Yan Yu

TNF-α plays an important role in the pathogenesis of salivary inflammatory diseases. Salivary dysfunction, which leads to impaired saliva secretion, can be caused by TNF-α-induced disrupted epithelial barrier. However, the signaling mechanism involved in TNF-α-modulated tight junction barrier in salivary gland remains unclear. Here, we found that TNF-α reduced transepithelial resistance (TER) and increased FITC-dextran flux in a rat submandibular cell line SMG-C6. Claudin (Cln)-3 was selectively downregulated and disrupted by TNF-α, whereas Cln-1, Cln-4, and β-catenin were not affected. Overexpression of Cln-3 retained and Cln-3 knockdown abolished the TNF-α-induced alterations. Moreover, TNF-α increased extracellular signal-regulated kinase (ERK1/2) phosphorylation and the expression of transcriptional factor slug. ERK1/2 kinase inhibitor PD98059 abrogated TNF-α-induced increase in paracellular permeability, alterations of Cln-3, and elevation of slug. Overexpression of slug decreased and slug knockdown increased Cln-3 expression. In addition, slug bind to the E-box elements of Cln-3 promoter in TNF-α-treated cells, and this response was blocked by PD98059. Furthermore, TNF-α decreased Cln-3 expression and increased slug content in cultured human submandibular gland. Taken together, our data suggest that Cln-3 plays a vital role in TNF-α-modulated paracellular permeability in submandibular epithelium and ERK1/2/slug signaling axis is involved in alteration of Cln-3 redistribution and downregulation.


Journal of Molecular Cell Biology | 2014

Claudin-4 is required for AMPK-modulated paracellular permeability in submandibular gland cells

Ruo-Lan Xiang; Mei Mei; Xin Cong; Jing Li; Yan Zhang; Chong Ding; Li-Ling Wu; Guang-Yan Yu

Tight junction plays an important role in mediating paracellular permeability in epithelia. We previously found that activation of AMP-activated protein kinase (AMPK) increased saliva secretion by modulating paracellular permeability in submandibular glands. However, the molecular mechanisms underlying AMPK-modulated paracellular permeability are unknown. In this study, we found that AICAR, an AMPK agonist, increased saliva secretion in the isolated rat submandibular glands, decreased transepithelial electrical resistance (TER), and increased 4 kDa FITC-dextran flux in cultured SMG-C6 cells. AICAR also induced redistribution of tight junction protein claudin-4, but not claudin-1, claudin-3, occludin, or ZO-1, from the cytoplasm to the membrane. Moreover, knockdown of claudin-4 by shRNA suppressed while claudin-4 re-expression restored the TER and 4 kDa FITC-dextran flux responses to AICAR. Additionally, AICAR increased ERK1/2 phosphorylation, and inhibition of ERK1/2 by U0126, an ERK1/2 kinase inhibitor, or by siRNA decreased AICAR-induced TER responses. AICAR induced the serine S199 phosphorylation of claudin-4 and enhanced the interaction of claudin-4 and occludin. Furthermore, pretreatment with U0126 significantly suppressed AMPK-modulated phosphorylation, redistribution, and interaction with occludin of claudin-4. Taken together, these results indicated that claudin-4 played a crucial role in AMPK-modulated paracellular permeability and ERK1/2 was required in AMPK-modulated tight junction barrier function in submandibular gland.


Journal of Dental Research | 2015

ZO-1 and -2 Are Required for TRPV1-Modulated Paracellular Permeability

Li J; Xin Cong; Y. Zhang; Ruo-Lan Xiang; Mei Mei; Ning-Yan Yang; Yun-Chao Su; Su-Yeon Choi; Kyu-Young Park; L. Zhang; L.L. Wu; Yu Gy

The tight junction–based paracellular pathway plays an important role in saliva secretion. Zonula occludens (ZO) proteins are submembranous proteins of tight junction complex; however, their function in salivary epithelium is poorly understood. Here, we found that activation of transient receptor potential vanilloid subtype 1 (TRPV1) by capsaicin increased rat saliva secretion both in vivo and ex vivo. Meanwhile, TRPV1 activation enlarged the width of tight junctions between neighboring acinar cells, increased the paracellular flux of 4-kDa fluorescein isothiocyanate (FITC)-dextran in submandibular gland (SMG) tissues, and decreased transepithelial electric resistance (TER) in SMG-C6 cells. ZO-1, -2, and -3 were distributed principally to the apical lateral region of acinar cells in SMG tissues and continuously encircled the peripheries of SMG-C6 cells in the untreated condition. TRPV1 activation obviously diminished ZO-1 and -2 staining, but not ZO-3 or β-catenin, at the cell-cell contacts ex vivo and in vitro. Moreover, in untreated SMG-C6 cells, ZO-1 and -2 single or double knockdown by small interfering RNA (siRNA) increased the paracellular flux of 4-kDa FITC-dextran. In capsaicin-treated cells, ZO-1 and -2 single or double knockdown abolished, whereas their re-expression restored, the capsaicin-induced increase in paracellular permeability. Furthermore, TRPV1 activation increased RhoA activity, and inhibition of either RhoA or Rho kinase (ROCK) abolished the capsaicin-induced TER decrease as well as ZO-1 and -2 redistribution. These results indicate that ZO-1 and -2 play crucial roles in both basal salivary epithelial barrier function and TRPV1-modulated paracellular transport. RhoA-ROCK signaling pathway is responsible for TRPV1-modulated paracellular permeability as well as ZO-1 and -2 redistribution.


Cancer Science | 2013

Decreased adiponectin level is associated with aggressive phenotype of tongue squamous cell carcinoma

Xiao-Hong Guo; Jin-Yu Wang; Yan Gao; Min Gao; Guang-Yan Yu; Ruo-Lan Xiang; Li Li; Ning-Yan Yang; Xin Cong; Xiao-Yan Xu; Sheng-Lin Li; Peng X; Li-Ling Wu

Circulating adiponectin levels are inversely associated with risk of various obesity‐related cancers. However, the effect of adiponectin on carcinogenesis and progression of tongue squamous cell carcinoma (TSCC) remains unknown. We measured serum adiponectin levels in 59 patients with TSCC and 50 healthy controls. Expression of adiponectin and its receptors in paired tumor and paracancerous specimens were determined by immunohistochemical staining (n = 37) and western blot (n = 30), respectively. Serum adiponectin level was lower in patients than in controls (5.0 ± 2.4 vs 8.4 ± 3.5 μg/mL, P < 0.01), and was inversely associated with histological grade and lymph node metastasis but not tumor size. Local adiponectin levels in tumor tissue gradually decreased as tumor‐node‐metastasis stage increased, while the expression of adiponectin receptors was unchanged. In addition, serum adiponectin levels in the TSCC patients without metabolic and cardiovascular diseases, or without smoking and drinking habits, were still lower than in controls. Furthermore, adiponectin inhibited the migration, but not proliferation, of SCC15 cells in vitro. These results indicate that a decreased adiponectin level is associated with risk of TSCC. Hypoadiponectinemia might be used as a biomarker to predict an aggressive phenotype of TSCC.


Oral Diseases | 2013

Decreased submandibular adiponectin is involved in the progression of autoimmune sialoadenitis in non-obese diabetic mice

Yun-Chao Su; Ruo-Lan Xiang; Y. Zhang; Chong Ding; Xin Cong; Xiao-Hong Guo; Ning-Yan Yang; Hua H; L.L. Wu; Yu Gy

OBJECTIVE To investigate a possible role of adiponectin in the pathogenesis of autoimmune sialoadenitis in non-obese diabetic (NOD) mouse model of Sjögrens syndrome. MATERIALS AND METHODS Expression of adiponectin and its receptors (AdipoR1/2) was detected by PCR, immunoblotting, or immunofluorescence. The level of adiponectin was quantified by ELISA. Adiponectin-related signaling molecules and pro-inflammatory cytokines were examined by PCR or immunoblotting. Apoptosis was evaluated by TUNEL staining, flow cytometry, and caspase 3 activation. RESULTS Adiponectin and AdipoR1/2 mRNA and protein were expressed in submandibular glands. Adiponectin immunostaining was widely diffused in the cytoplasm of acinar and ductal cells. AdipoR1 was mainly distributed in acinar cytoplasm, while AdipoR2 was predominantly located at acinar cell membrane. Submandibular adiponectin levels were reduced during the progression of autoimmune sialoadenitis in 7-, 14-, and 21-week-old NOD mice, while AdipoR1/2 levels were unchanged. The levels of phosphorylated adenosine monophosphate-activated protein kinase, extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase were decreased, while interferon (IFN)-γ and glandular apoptosis were temporally increased at all time points. Moreover, exogenous adiponectin supplement inhibited, whereas neutralizing endogenous adiponectin by its antibody promoted IFN-γ-induced apoptosis and caspase 3 activation in cultured submandibular acinar cells. CONCLUSIONS Adiponectin plays a protective role on submandibular cells. Decreased adiponectin might promote glandular destruction in autoimmune sialoadenitis.


Journal of Proteome Research | 2011

Proteomic Analysis of Human Transplanted Submandibular Gland in Patients with Epiphora after Transplantation

Chong Ding; Yan Zhang; Peng X; Yang Wang; Lei Zhang; Xin Cong; Qian-Wen Ding; Ruo-Lan Xiang; Li-Ling Wu; Guang-Yan Yu

Submandibular gland autotransplantation is effective for treating severe dry eye syndrome. However, more than 40% of patients show epiphora within 3-6 months after treatment. The mechanism underlying the hypersecretion in epiphora remains to be elucidated for developing novel interventions. Since salivary gland secretion is dependent on a variety of proteins, we analyzed the changes in protein expression in transplanted glands of epiphora patients with 2-D gel electrophoresis and electrospray ionization quadrupole/time-of-flight mass spectrometry and evaluated their possible roles in epiphora. There were 23 proteins that showed altered expression in the glands of epiphora patients, 15 being up-expressed and 8 being down-expressed. The expression of secretory proteins was decreased in these glands, including alpha-amylase, cystatin S, SA, and SN. In contrast, cytoskeletal proteins were all up-regulated, including actin and vimentin. Immunofluorescence revealed that the intensity ratio of F-actin in apical and lateral cytoplasm to total F-actin in acini was decreased in the glands of epiphora patients. Carbachol stimulation induced a similar redistribution of F-actin in the control glands. Phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) was increased in both carbachol-stimulated and epiphora glands. Preincubation of submandibular glands with ERK1/2 inhibitors PD98059 or U0126 inhibited carbachol-induced F-actin redistribution. These results indicated that differentially expressed proteins participated in the hypersecretion of transplanted submandibular glands and the redistribution of F-actin might be involved in this hypersecretion in an ERK1/2-dependent manner.


Journal of Dental Research | 2017

Endothelial Tight Junctions Are Opened in Cholinergic-Evoked Salivation In Vivo.

Xin Cong; Y. Zhang; Q.H. He; Tai Wei; Xue-Ming Zhang; J.Z. Zhang; Ruo-Lan Xiang; Yu Gy; L.L. Wu

Blood vessels provide the original supplies for the formation of primary saliva, which is regulated by the tight junctions (TJs) between endothelial cells. Previous studies have shown that blood flow increases with vasodilatation during cholinergic-evoked salivation. However, changes in vascular paracellular permeability and the role of endothelial TJs in salivation are unknown. Here, we established an in vivo paracellular permeability detection system and observed that the endothelial TJs were permeable to 4-kDa fluorescein isothiocyanate (FITC)–dextran while impermeable to 40- and 70-kDa FITC-dextran under an unstimulated condition in mouse submandibular glands (SMGs). Pilocarpine increased the flux of 4- and 40-kDa FITC-dextran out of blood vessels but did not affect 70-kDa FITC-dextran. Claudin 5, a TJ protein specifically localized in salivary endothelial cells, was redistributed from the apicolateral membranes to the lateral and basolateral membranes and cytoplasm in cholinergic-stimulated mouse SMGs and freshly cultured human SMG tissues. In the transplanted SMGs from epiphora patients, we found that claudin 5 was present in the basolateral membranes and cytoplasm, instead of the apical region in control SMGs. Moreover, the level of phospho–myosin light chain 2 increased within the blood vessels of the pilocarpine-stimulated mouse SMGs and transplanted human SMGs, while the downstream molecule F-actin was reorganized in the endothelial cells of the transplanted human SMGs. Taken together, our findings provide direct visual evidence that the opening of endothelial TJs and the redistribution of claudin 5 are essential events contributing to cholinergic-evoked salivation, thus enriching our understanding of the secretory mechanisms that link blood flow to primary saliva formation by regulating the endothelial paracellular permeability.

Collaboration


Dive into the Ruo-Lan Xiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge