Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L.L. Wu is active.

Publication


Featured researches published by L.L. Wu.


Journal of Dental Research | 2010

Functional Vanilloid Receptor-1 in Human Submandibular Glands

Q.W. Ding; Y. Zhang; YongFu Wang; Yingbao Wang; L. Zhang; Chong Ding; L.L. Wu; Yu Gy

Vanilloid receptor-1 (VR1) was originally found in the nervous system. Recent evidence indicates that VR1 is also expressed in various cell types. We hypothesized that VR1 exists in the human submandibular gland (SMG) and is involved in regulating salivary secretion. VR1 mRNA and protein were expressed in human SMGs and a human salivary intercalated duct cell line. VR1 was mainly located in serous acinar and ductal cells, but not in mucous acinar cells. Capsaicin, an agonist of VR1, increased intracellular free calcium, enhanced phosphorylation of extracellular signal-regulated kinase, and induced the trafficking of aquaporin 5 (AQP5) from the cytoplasm to the plasma membrane. These effects were abolished by pre-treatment with the VR1 antagonist capsazepine. Furthermore, capsaicin cream applied to the skin covering the submandibular area increased salivary secretion. These findings indicated that a functional VR1 is expressed in the human SMG and is involved in regulating salivary secretion by mediating AQP5 trafficking.


PLOS ONE | 2013

Adiponectin Increases Secretion of Rat Submandibular Gland via Adiponectin Receptors-Mediated AMPK Signaling

Chong Ding; Li Li; Yun-Chao Su; Ruo-Lan Xiang; Xin Cong; Hong-Kui Yu; Sheng-Lin Li; L.L. Wu; Guang-Yan Yu

Adiponectin and adiponectin receptors (AdipoR1/2) are expressed in various tissues and are involved in the regulation of multiple functions such as energy metabolism and inflammatory responses. However, the effect of adiponectin and AdipoRs in submandibular glands has not been fully evaluated. In the present study, we found that mRNA and protein of both adiponectin and AdipoR1/2 were expressed in rat submandibular glands and in the SMG-C6 cell line, as evidenced by RT-PCR and Western blot analysis. Immunofluorescence staining showed that adiponectin was diffused in the cytoplasm, while AdipoR1/2 was concentrated in the membrane of acinar cells. Saliva flow was significantly increased by full length adiponectin (fAd) or globular adiponectin (gAd) perfusion in isolated rat submandibular glands. 5-Aminoimidazole-4-carboxamide-1-4-ribofuranoside (AICAR), an adenosine monophosphate activated protein kinase (AMPK) activator, also increased saliva secretion. fAd, gAd, and AICAR all increased the average width of apical tight junctions in perfused submandibular glands, and decreased transepithelial electrical resistance (TER) in SMG-C6 cells, suggesting that adiponectin promoted secretion by modulating paracellular permeability. fAd and gAd increased p-AMPK levels, while AraA, an AMPK antagonist, abolished fAd- and gAd-induced changes in secretion, tight junction ultrastructure, and TER. Moreover, both AdipoR1 and AdipoR2 were required for fAd- or gAd-induced p-AMPK and TER responses, suggesting from their inhibition following AdipoR1 or AdipoR2 knockdown, and co-knockdown of AdipoRs by RNA interference. Our results suggest that adiponectin functions as a promoter of salivary secretion in rat submandibular glands via activation of AdipoRs, AMPK, and paracellular permeability.


Oral Diseases | 2010

Carbachol improves secretion in the early phase after rabbit submandibular gland transplantation.

L. Shi; Xin Cong; Y. Zhang; Chong Ding; Q.W. Ding; Fy Fu; L.L. Wu; Yu Gy

OBJECTIVES To investigate the changes in the muscarinic receptor signaling pathway with submandibular gland (SMG) transplantation and whether carbachol improves secretion in transplanted SMGs. MATERIALS AND METHODS SMG autotransplantation was performed in a rabbit model. Carbachol (1 microM) was infused into the transplanted glands from postoperative day 1-7. The expression of the M1 and M3 muscarinic receptors, aquaporin-5 (AQP5), and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) was measured by RT-PCR, immunoblotting or immunofluorescence. The content of inositol 1, 4, 5-trisphosphate (IP(3)) was measured by radioimmunoassay. RESULTS Salivary flow of the transplanted SMGs was decreased after transplantation. As well, the expressions of M1 and M3 receptors and their downstream signaling molecules, IP(3), p-ERK1/2 and AQP5, were all reduced. Atrophy of acinar cells was shown in transplanted glands. However, all these alterations were reversed after carbachol treatment for 7 days. Furthermore, carbachol directly increased the mRNA expression of AQP5 and phosphorylation of ERK1/2 in cultured neonatal rabbit SMG cells. CONCLUSION A lack of acetylcholine and downregulation of the muscarinic receptor signaling pathway is involved in the early hypofunction of transplanted SMGs. Carbachol treatment could be a new therapeutic strategy to improve secretion and prevent the obstruction of Whartons duct in the early phase after SMG transplantation.


Journal of Dental Research | 2014

Hypersensitive mAChRs are Involved in the Epiphora of Transplanted Glands

Chong Ding; Xin Cong; Y. Zhang; Ning-Yan Yang; Sheng-Lin Li; L.L. Wu; Yu Gy

Autologous transplantation of the submandibular gland is an effective treatment for severe dry eye syndrome. However, more than 40% of patients experience epiphora 3 to 6 months after transplantation. The underlying mechanism of epiphora remains to be elucidated. To investigate the potential roles of muscarinic acetylcholine receptors (mAChRs) in the induction of epiphora in transplanted glands, we assessed and found elevated mRNA and protein expression of M1- and M3-mAChR in transplanted glands from epiphora patients. The content of inositol 1, 4, 5-trisphosphate was also elevated. Moreover, carbachol (5 and 10 µM) induced greater increase of [Ca2+]i in isolated epiphora submandibular cells than in controls. Although aquaporin-5 (AQP5) content and distribution in the apical and lateral plasma of epiphora glands did not change, AQP5 content was reduced in lipid microdomains (lipid rafts and caveolae) but increased in non-lipid microdomains compared with controls. Carbachol (10 µM) increased the ratio of non-lipid microdomain to total AQP5 in the cultured control submandibular gland tissue. Taken together, these results indicated that hypersensitive mAChRs might be involved in the epiphora of transplanted submandibular glands by modulating AQP5 trafficking.


Journal of Dental Research | 2016

Interleukin-17 Impairs Salivary Tight Junction Integrity in Sjögren’s Syndrome:

L. Zhang; Xin Cong; Y. Zhang; Tai Wei; Yun-Chao Su; A.C.A. Serrão; A.R.T. Brito; Yu Gy; H. Hua; L.L. Wu

Sjögren’s syndrome (SS) is an inflammatory autoimmune disease that causes secretory dysfunction of the salivary glands. It has been reported that proinflammatory cytokine interleukin-17 (IL-17) was elevated and tight junction (TJ) integrity disrupted in minor salivary glands from SS patients. However, whether the elevated IL-17 in SS affects TJ integrity and thereby alters the function of salivary gland is unknown. Here, by using nonobese diabetic (NOD) mice as SS model, we found that the stimulated salivary flow rate was significantly decreased in NOD mice. Lymphocyte infiltration was mainly observed in submandibular glands (SMGs), but not parotid glands (PGs), of NOD mice. IL-17 was significantly increased and mainly located in lymphocytic-infiltrating regions in SMGs but not detectable in PGs of NOD mice. Meanwhile, the epithelial barrier function was disrupted, as evidenced by an increased paracellular tracer clearance and an enlarged acinar TJ width in SMGs of NOD mice. Furthermore, claudin-1 and -3 were elevated especially at the basolateral membranes, whereas claudin-4, occludin, and zonula occludens–1 (ZO-1) were reduced in SMGs of NOD mice. Moreover, occludin and ZO-1 were dispersed into cytoplasm in SMGs of NOD mice. However, no change in the expression and distribution of TJ proteins was found in PGs. In vitro, IL-17 significantly decreased the levels and apical staining of claudin-4 and ZO-1 proteins in the cultured SMG tissues, as well as claudin-1, occludin, and ZO-1 in PG tissues. Moreover, IL-17 activated the phosphorylation of IκBα and p65 in SMG cells, whereas pretreatment with NF-κB inhibitor pyrrolidine dithiocarbamate suppressed the IL-17-induced downregulation of claudin-4 and ZO-1 in SMG tissues. Taken together, these findings indicate that IL-17 derived from infiltrating lymphocyte impairs the integrity of TJ barrier through NF-κB signaling pathway, and thus might contribute to salivary gland dysfunction in SS.


Journal of Dental Research | 2015

ZO-1 and -2 Are Required for TRPV1-Modulated Paracellular Permeability

Li J; Xin Cong; Y. Zhang; Ruo-Lan Xiang; Mei Mei; Ning-Yan Yang; Yun-Chao Su; Su-Yeon Choi; Kyu-Young Park; L. Zhang; L.L. Wu; Yu Gy

The tight junction–based paracellular pathway plays an important role in saliva secretion. Zonula occludens (ZO) proteins are submembranous proteins of tight junction complex; however, their function in salivary epithelium is poorly understood. Here, we found that activation of transient receptor potential vanilloid subtype 1 (TRPV1) by capsaicin increased rat saliva secretion both in vivo and ex vivo. Meanwhile, TRPV1 activation enlarged the width of tight junctions between neighboring acinar cells, increased the paracellular flux of 4-kDa fluorescein isothiocyanate (FITC)-dextran in submandibular gland (SMG) tissues, and decreased transepithelial electric resistance (TER) in SMG-C6 cells. ZO-1, -2, and -3 were distributed principally to the apical lateral region of acinar cells in SMG tissues and continuously encircled the peripheries of SMG-C6 cells in the untreated condition. TRPV1 activation obviously diminished ZO-1 and -2 staining, but not ZO-3 or β-catenin, at the cell-cell contacts ex vivo and in vitro. Moreover, in untreated SMG-C6 cells, ZO-1 and -2 single or double knockdown by small interfering RNA (siRNA) increased the paracellular flux of 4-kDa FITC-dextran. In capsaicin-treated cells, ZO-1 and -2 single or double knockdown abolished, whereas their re-expression restored, the capsaicin-induced increase in paracellular permeability. Furthermore, TRPV1 activation increased RhoA activity, and inhibition of either RhoA or Rho kinase (ROCK) abolished the capsaicin-induced TER decrease as well as ZO-1 and -2 redistribution. These results indicate that ZO-1 and -2 play crucial roles in both basal salivary epithelial barrier function and TRPV1-modulated paracellular transport. RhoA-ROCK signaling pathway is responsible for TRPV1-modulated paracellular permeability as well as ZO-1 and -2 redistribution.


Journal of Dental Research | 2015

Pre- and Post-synaptic Effects of Botulinum Toxin A on Submandibular Glands

Hui Xu; X.F. Shan; Xin Cong; Ning-Yan Yang; L.L. Wu; Yu Gy; Y. Zhang; Z.G. Cai

Intraglandular injection of botulinum toxin type A (BoNT/A) is an effective treatment for sialorrhea. Despite numerous experimental and clinical studies on inhibition of saliva section by BoNT/A, the proteolysis of synaptosomal-associated protein 25 (SNAP-25) following BoNT/A treatment has not yet been confirmed in the salivary gland after injection of BoNT/A. More important, it is not known whether BoNT/A exerts a direct effect in acinar cells. Here, we show that injection of BoNT/A into the rat submandibular gland (SMG) decreased salivary flow in a dose-dependent manner; the inhibitory effect lasted at least 4 wk, and salivary flow recovered to normal levels by 12 wk. During the inhibitory period, SMG neurons and synapses expressed lower levels of full-length SNAP-25, and cleavage of SNAP-25 was observed, as indicated by detection of reduced molecular weight SNAP-25 using Western blotting. In addition, the water channel aquaporin 5 (AQP5) was downregulated and abnormally distributed in rat SMG after injection of BoNT/A. The direct effects of BoNT/A on AQP5 expression and distribution were assessed in vitro to exclude the influence of BoNT/A-induced inhibitory neurotransmission. In stable GFP-AQP5–transfected SMG-C6 cells, treatment with BoNT/A reduced the cell surface protein level of AQP5 in a dose- and time-dependent manner without affecting total AQP5 protein expression. Cell surface biotinylation and immunofluorescence demonstrated translocation of AQP5 from the membrane to the cytoplasm, which was confirmed by decreased levels of AQP5 protein in the membrane fraction and increased levels in the cytoplasmic fraction, suggestive of AQP5 redistribution. Taken together, these results indicated that BoNT/A reversibly decreased saliva secretion in rat SMGs through not only the presynaptic SNAP-25 cleavage but also the postsynaptic AQP5 redistribution. These data provide the first evidence for a direct effect of BoNT/A on the salivary gland.


Journal of Dental Research | 2009

Isoproterenol Improves Secretion of Transplanted Submandibular Glands

Y.M. Li; Y. Zhang; L. Shi; B. Xiang; Xin Cong; Zhang Y; L.L. Wu; Yu Gy

Autotransplantation of the submandibular gland is effective for severe keratoconjunctivitis sicca. However, most transplants show decreased secretion shortly after the operation, which leads to obstruction of Wharton’s duct. The hypothesis that decreased catecholamine release due to denervation contributes to hypofunction in the early phase was tested in transplanted glands in rabbits. We found that salivary flow, expression of β1 - and β2-adrenoceptor, and the maximum binding capacity were markedly decreased in the transplanted glands. Isoproterenol significantly reversed the decreased secretion, enhanced the expressions of β1 - and β2-adrenoceptor, and ameliorated the atrophy of acinar cells. The contents of cAMP and phospho-ERK 1/2 were increased after isoproterenol treatment. These results indicate that lack of β-adrenoceptor stimulation is involved in early dysfunction of the transplanted gland. Isoproterenol treatment moderates structural injury and improves secretory function in the transplanted submandibular gland through up-regulating β1 - and β2-adrenoceptor expression and post-receptor signal transduction.


Biomedical and Environmental Sciences | 2015

Visfatin Protects Rat Pancreatic β-cells against IFN-γ-Induced Apoptosis through AMPK and ERK1/2 Signaling Pathways *

Ruo Lan Xiang; Mei Mei; Yun Chao Su; Li Li; Jin Yu Wang; L.L. Wu

OBJECTIVE Interferon-γ (IFN-γ) plays an important role in apoptosis and was shown to increase the risk of diabetes. Visfatin, an adipokine, has anti-diabetic, anti-tumor, and regulating inflammatory properties. In this study we investigated the effect of visfatin on IFN-γ-induced apoptosis in rat pancreatic β-cells. METHODS The RINm5F (rat insulinoma cell line) cells exposed to IFN-γ were treated with or without visfatin. The viability and apoptosis of the cells were assessed by using MTT and flow cytometry. The expressions of mRNA and protein were detected by using real-time PCR and western blot analysis. RESULTS The exposure of RINm5F cells to IFN-γ for 48 h led to increased apoptosis percentage of the cells. Visfatin pretreatment significantly increased the cell viability and reduced the cell apoptosis induced by IFN-γ. IFN-γ-induced increase in expression of p53 mRNA and cytochrome c protein, decrease in mRNA and protein levels of anti-apoptotic protein Bcl-2 were attenuated by visfatin pretreatment. Visfatin also increased AMPK and ERK1/2 phosphorylation and the anti-apoptotic action of visfatin was attenuated by the AMPK and ERK1/2 inhibitor. CONCLUSION These results suggested that visfatin protected pancreatic islet cells against IFN-γ-induced apoptosis via mitochondria-dependent apoptotic pathway. The anti-apoptotic action of visfatin is mediated by activation of AMPK and ERK1/2 signaling molecules.


Oral Diseases | 2013

Decreased submandibular adiponectin is involved in the progression of autoimmune sialoadenitis in non-obese diabetic mice

Yun-Chao Su; Ruo-Lan Xiang; Y. Zhang; Chong Ding; Xin Cong; Xiao-Hong Guo; Ning-Yan Yang; Hua H; L.L. Wu; Yu Gy

OBJECTIVE To investigate a possible role of adiponectin in the pathogenesis of autoimmune sialoadenitis in non-obese diabetic (NOD) mouse model of Sjögrens syndrome. MATERIALS AND METHODS Expression of adiponectin and its receptors (AdipoR1/2) was detected by PCR, immunoblotting, or immunofluorescence. The level of adiponectin was quantified by ELISA. Adiponectin-related signaling molecules and pro-inflammatory cytokines were examined by PCR or immunoblotting. Apoptosis was evaluated by TUNEL staining, flow cytometry, and caspase 3 activation. RESULTS Adiponectin and AdipoR1/2 mRNA and protein were expressed in submandibular glands. Adiponectin immunostaining was widely diffused in the cytoplasm of acinar and ductal cells. AdipoR1 was mainly distributed in acinar cytoplasm, while AdipoR2 was predominantly located at acinar cell membrane. Submandibular adiponectin levels were reduced during the progression of autoimmune sialoadenitis in 7-, 14-, and 21-week-old NOD mice, while AdipoR1/2 levels were unchanged. The levels of phosphorylated adenosine monophosphate-activated protein kinase, extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase were decreased, while interferon (IFN)-γ and glandular apoptosis were temporally increased at all time points. Moreover, exogenous adiponectin supplement inhibited, whereas neutralizing endogenous adiponectin by its antibody promoted IFN-γ-induced apoptosis and caspase 3 activation in cultured submandibular acinar cells. CONCLUSIONS Adiponectin plays a protective role on submandibular cells. Decreased adiponectin might promote glandular destruction in autoimmune sialoadenitis.

Collaboration


Dive into the L.L. Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ning-Yan Yang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge