Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruoxin Ruan is active.

Publication


Featured researches published by Ruoxin Ruan.


Research in Microbiology | 2015

PdbrlA, PdabaA and PdwetA control distinct stages of conidiogenesis in Penicillium digitatum

Mingshuang Wang; Xuepeng Sun; Congyi Zhu; Qian Xu; Ruoxin Ruan; Dongliang Yu; Hongye Li

Penicillium digitatum is one of the most important citrus postharvest pathogens worldwide. Reproduction of massive asexual spores is the primary factor contributing to the epidemic of citrus green mold. To understand the molecular mechanisms underlying conidiogenesis in P. digitatum, we functionally characterized the Aspergillus nidulans orthologs of brlA, abaA and wetA. We showed that deletion of PdbrlA completely blocked formation of conidiophores, whereas deletion of PdabaA led to the formation of aberrant and non-functional phialides. The PdwetA mutant showed various defective phenotypes, such as abnormal conidia with loose cell walls, delayed germination and reduced tolerance to osmotic, detergent, heat shock and menadione stresses, but elevated resistance to H2O2. PdbrlA-influenced genes were identified by comparing global gene expression profiles between the wild-type and the PdbrlA deletion mutant during conidiation. Gene ontology analysis of these differentially expressed genes (DEGs) revealed the diverse roles of PdbrlA in metabolism, transportation and cell structure. Moreover, out of 39 genes previously reported to be involved in conidiogenesis in Aspergillus, mRNA levels of 14 genes were changed in ΔPdbrlA. Our results confirm the roles of brlA, abaA and wetA in P. digitatum conidiogenesis and provide new insights into the genetics of conidiation in filamentous fungi.


Microbiological Research | 2014

Os2 MAP kinase-mediated osmostress tolerance in Penicillium digitatum is associated with its positive regulation on glycerol synthesis and negative regulation on ergosterol synthesis

Mingshuang Wang; Changsheng Chen; Congyi Zhu; Xuepeng Sun; Ruoxin Ruan; Hongye Li

High osmolarity glycerol (HOG) pathway is ubiquitously distributed among eukaryotic organisms and plays an important role in adaptation to changes in the environment. In this study, the Hog1 ortholog in Penicillium digitatum, designated Pdos2, was identified and characterized using a gene knock-out strategy. The ΔPdos2 mutant showed a considerably increased sensitivity to salt stress and cell wall-disturbing agents and a slightly increased resistance to fungicides iprodione and fludioxonil, indicating that Pdos2 is involved in response to hyperosmotic stress, regulation of cell wall integrity and sensitivity to fungicides iprodione and fludioxonil. Surprisingly, the mutant was not affected in response to oxidative stress caused by H2O2. The average lesion size in citrus fruits caused by ΔPdos2 mutant was smaller (approximately 25.0% reduction) than that caused by the wild-type strain of P. digitatum at 4 days post inoculation, which suggests that Pdos2 is needed for full virulence of P. digitatum. Interestingly, in the presence of 0.7 M NaCl, the glycerol content was remarkably increased and the ergosterol was decreased in mycelia of the wide-type P. digitatum, whereas the glycerol content was only slightly increased and the ergosterol content remained stable in the ΔPdos2 mutant, suggesting that Pdos2-mediated osmotic adaption is associated with its positive regulation on glycerol synthesis and negative regulation on ergosterol synthesis.


Environmental Microbiology Reports | 2013

PdMLE1, a specific and active transposon acts as a promoter and confers Penicillium digitatum with DMI resistance

Xuepeng Sun; Qian Xu; Ruoxin Ruan; Tianyuan Zhang; Congyi Zhu; Hongye Li

Previously, we found a 199 bp element which inserted into the promoter of PdCYP51B gene in Penicillium digitatum, was associated with the overexpression of this gene and DMI fungicides resistance. However, the mechanism how this 199 bp element upregulate the expression of downstream gene was completely unknown. In the current study, we confirmed that this 199 bp element was a MITE-like element, designated as PdMLE1. blast searching and Southern blot showed that this 199 bp element was unique to P. digitatum. Genome-wide localization of PdMLE1 showed that it preferentially inserted into A + T rich regions, and several copies localized at the coding or regulation regions of genes were found. Penicillium digitatum mutant harbouring the PdMLE1 fused GFP gene showed the strong green fluorescence, indicating the powerful promoter activity of PdMLE1. By promoter deletion method, we identified a 20 bp core sequence in PdMLE1 which was associated with its promoter activity. In addition, we also limited the core element of PdCYP51B promoter to a 368 bp region. Collectively, we proposed a model that PdMLE1 acted as a powerful promoter and most likely recruited the transcription factor(s), therefore led to the overexpression of PdCYP51B gene and conferred P. digitatum with DMI resistance. This is the first regulation model of transposon resulted fungicide resistance proved in plant pathogens.


Biochemical and Biophysical Research Communications | 2014

Glucosylceramides are required for mycelial growth and full virulence in Penicillium digitatum

Congyi Zhu; Mingshuang Wang; Weili Wang; Ruoxin Ruan; Haijie Ma; Cungui Mao; Hongye Li

Glucosylceramides (GlcCers) are important lipid components of the membrane systems of eukaryotes. Recent studies have suggested the roles for GlcCers in regulating fungal growth and pathogenesis. In this study, we report the identification and functional characterization of PdGcs1, a gene encoding GlcCer synthase (GCS) essential for the biosynthesis of GlcCers, in Penicilliumdigitatum genome. We demonstrated that the deletion of PdGcs1 in P. digitatum resulted in the complete loss of production of GlcCer (d18:1/18:0 h) and GlcCer (d18:2/18:0 h), a decrease in vegetation growth and sporulation, and a delay in spore germination. The virulence of the PdGcs1 deletion mutant on citrus fruits was also impaired, as evidenced by the delayed occurrence of water soaking lesion and the formation of smaller size of lesion. These results suggest that PdGcs1 is a bona fide GCS that plays an important role in regulating cell growth, differentiation, and virulence of P. digitatum by controlling the biosynthesis of GlcCers.


PLOS ONE | 2017

Functional analysis of two sterol regulatory element binding proteins in Penicillium digitatum

Ruoxin Ruan; Mingshuang Wang; Xin Liu; Xuepeng Sun; Kuang-Ren Chung; Hongye Li

The sterol regulatory element binding proteins (SREBPs) are key regulators for sterol homeostasis in most fungi. In the citrus postharvest pathogen Penicillium digitatum, the SREBP homolog is required for fungicide resistance and regulation of CYP51 expression. In this study, we identified another SREBP transcription factor PdSreB in P. digitatum, and the biological functions of both SREBPs were characterized and compared. Inactivation of PdsreA, PdsreB or both genes in P. digitatum reduced ergosterol contents and increased sensitivities to sterol 14-α-demethylation inhibitors (DMIs) and cobalt chloride. Fungal strains impaired at PdsreA but not PdsreB increased sensitivity to tridemorph and an iron chelator 2,2’-dipyridyl. Virulence assays on citrus fruit revealed that fungal strains impaired at PdsreA, PdsreB or both induce maceration lesions similar to those induced by wild-type. However, ΔPdsreA, ΔPdsreB or the double mutant strain rarely produce aerial mycelia on infected citrus fruit peels. RNA-Seq analysis showed the broad regulatory functions of both SREBPs in biosynthesis, transmembrane transportation and stress responses. Our results provide new insights into the conserved and differentiated regulatory functions of SREBP homologs in plant pathogenic fungi.


Applied and Environmental Microbiology | 2018

Thioredoxin and Glutaredoxin Systems Required for Oxidative Stress Resistance, Fungicide Sensitivity, and Virulence of Alternaria alternata

Haijie Ma; Mingshuang Wang; Yunpeng Gai; Huilan Fu; Bin Zhang; Ruoxin Ruan; Kuang-Ren Chung; Hongye Li

ABSTRACT This study determined the function of thioredoxin and glutaredoxin systems in the phytopathogenic fungus Alternaria alternata via analyzing mutants obtained from the targeted deletion of genes encoding thioredoxin peroxidase (Tsa1), thioredoxin reductase (Trr1), and glutathione reductase (Glr1). Trr1 and Glr1, but not Tsa1, are required for growth and conidiation. The reduced growth and conidiation seen in the Trr1 or Glr1 deletion mutant can be restored by glutathione. Deletion mutants showing growth inhibition by oxidants are defective for H2O2 detoxification and induce smaller lesions on citrus leaves. Trr1 and Glr1, but not Tsa1, also contribute to NaCl resistance. Glr1 is required for sorbitol resistance and is responsible for resistance to mancozeb and boscalid but not chlorothalonil fungicides, a novel phenotype that has not been reported in fungi. Trr1 is required for resistance to boscalid and chlorothalonil fungicides but confers susceptibility to mancozeb. The Tsa1 deletion mutant displays wild-type sensitivity to the tested fungicides. The expression of Tsa1 and Trr1 is regulated by the oxidative stress responsive regulators Yap1, Hog1, and Skn7. The expression of Tsa1, but not Trr1, is also regulated indirectly by the NADPH oxidase. The results indicate that the capability to resist oxidative stress is required for virulence of A. alternata. IMPORTANCE The thioredoxin and glutaredoxin systems are important thiol antioxidant systems in cells, and knowledge of these two systems in the plant-pathogenic fungus A. alternata is useful for finding new strategies to reduce the virulence of this pathogen. In this study, we demonstrated that thiol antioxidant system-related genes (Tsa1, Trr1, and Glr1) are required for H2O2 detoxification and virulence in A. alternata. Moreover, deletion of Trr1 results in hypersensitivity to the fungicides chlorothalonil and boscalid, and Glr1 deletion mutants are highly sensitive to mancozeb, which is the fungicide mostly used in citrus fields. Therefore, our findings demonstrate that the ability to detoxify reactive oxygen species (ROS) plays a critical role in pathogenesis on citrus and provide novel insights into the physiological functions of thiol-containing systems in fungicide sensitivity for A. alternata.


Research in Microbiology | 2015

Deletion of PdMit1, a homolog of yeast Csg1, affects growth and Ca2+ sensitivity of the fungus Penicillium digitatum, but does not alter virulence

Congyi Zhu; Weili Wang; Mingshuang Wang; Ruoxin Ruan; Xuepeng Sun; Meixian He; Cungui Mao; Hongye Li

GDP-mannose:inositol-phosphorylceramide (MIPC) and its derivatives are important for Ca(2+) sensitization of Saccharomyces cerevisiae and for the virulence of Candida albicans, but its role in the virulence of plant fungal pathogens remains unclear. In this study, we report the identification and functional characterization of PdMit1, the gene encoding MIPC synthase in Penicillium digitatum, one of the most important pathogens of postharvest citrus fruits. To understand the function of PdMit1, a PdMit1 deletion mutant was generated. Compared to its wild-type control, the PdMit1 deletion mutant exhibited slow radial growth, decreased conidia production and delayed conidial germination, suggesting that PdMit1 is important for the growth of mycelium, sporulation and conidial germination. The PdMit1 deletion mutant also showed hypersensitivity to Ca(2+). Treatment with 250 mmol/l Ca(2+) induced vacuole fusion in the wild-type strain, but not in the PdMit1 deletion mutant. Treatment with 250mmol/lCaCl2 upregulated three Ca(2+)-ATPase genes in the wild-type strain, and this was significantly inhibited in the PdMit1 deletion mutant. These results suggest that PdMit1 may have a role in regulating vacuole fusion and expression of Ca(2+)-ATPase genes by controlling biosynthesis of MIPC, and thereby imparts P. digitatum Ca(2+) tolerance. However, we found that PdMit1 is dispensable for virulence of P. digitatum.


Frontiers in Microbiology | 2018

Csn5 Is Required for the Conidiogenesis and Pathogenesis of the Alternaria alternata Tangerine Pathotype

Mingshuang Wang; Xiao Yang; Ruoxin Ruan; Huilan Fu; Hongye Li

The COP9 signalosome (CSN) is a highly conserved protein complex involved in the ubiquitin-proteasome system. Its metalloisopeptidase activity resides in subunit 5 (CSN5). Functions of csn5 in phytopathogenic fungi are poorly understood. Here, we knocked out the csn5 ortholog (Aacsn5) in the tangerine pathotype of Alternaria alternata. The ΔAacsn5 mutant showed a moderately reduced growth rate compared to the wildtype strain and was unable to produce conidia. The growth of ΔAacsn5 mutant was not affected in response to oxidative and osmotic stresses. Virulence assays revealed that ΔAacsn5 induced no or significantly reduced necrotic lesions on detached citrus leaves. The defects in hyphal growth, conidial sporulation, and pathogenicity of ΔAacsn5 were restored by genetic complementation of the mutant with wildtype Aacsn5. To explore the molecular mechanisms of conidiation and pathogenesis underlying Aacsn5 regulation, we systematically examined the transcriptomes of both ΔAacsn5 and the wildtype. Generally, 881 genes were overexpressed and 777 were underexpressed in the ΔAacsn5 mutant during conidiation while 694 overexpressed and 993 underexpressed during infection. During asexual development, genes related to the transport processes and nitrogen metabolism were significantly downregulated; the expression of csn1–4 and csn7 in ΔAacsn5 was significantly elevated; secondary metabolism gene clusters were broadly affected; especially, the transcript level of the whole of cluster 28 and 30 was strongly induced. During infection, the expression of the host-specific ACT toxin gene cluster which controls the biosynthesis of the citrus specific toxin was significantly repressed; many other SM clusters with unknown products were also regulated; 86 out of 373 carbohydrate-active enzymes responsible for breaking down the plant dead tissues showed uniquely decreased expression. Taken together, our results expand our understanding of the roles of csn5 on conidiation and pathogenicity in plant pathogenic fungi and provide a foundation for future investigations.


bioRxiv | 2017

Genomic features and evolution of the conditionally dispensable chromosome in the tangerine pathotype of Alternaria alternata

Mingshuang Wang; Huilan Fu; Xing-Xing Shen; Ruoxin Ruan; Nicholas Pun; Jianping Xu; Hongye Li; Antonis Rokas

The tangerine pathotype of the ascomycete fungus Alternaria alternata is the causal agent of citrus brown spot, which can result in significant losses of both yield and marketability for tangerines and tangerine hybrids worldwide. A conditionally dispensable chromosome (CDC), which harbors the host-selective ACT toxin gene cluster, is required for tangerine pathogenicity of A. alternata. To understand the genetic makeup and evolution of the tangerine pathotype CDC, we analyzed the function and evolution of the CDC genes present in the A. alternata Z7 strain. The 1.84Mb long CDC contains 512 predicted protein-coding genes, which are enriched in functional categories associated with ‘metabolic process’ (132 genes, p-value = 0.00192) including ‘oxidation-reduction process’ (48 genes, p-value = 0.00021) and ‘lipid metabolic process’ (11 genes, p-value = 0.04591). Relatively few of the CDC genes can be classified as CAZymes (13), kinases (3) and transporters (20). Differential transcriptome analysis of H2O2 treatment and control conditions revealed that 29 CDC genes were significantly up-regulated and 14 were significantly down-regulated, suggesting that CDC genes may play a role in coping with oxidative stress. Evolutionary analysis of the 512 CDC proteins showed that their evolutionary conservation tends to be restricted within the genus Alternaria and that the CDC genes evolve faster than genes in the essential chromosomes. Interestingly, phylogenetic analysis suggested that the genes of 13 enzymes and one sugar transporter residing in the CDC were likely horizontally transferred from distantly related species. Among these genes, 5 were likely transferred as a physically linked cluster of genes from Cryptococcus (Basidiomycota) or Penicillium (Eurotiomycetes) and another 4 genes might have been transferred from Colletotrichum (Sordariomycetes). One carboxylesterase gene was transferred from bacteria but functionally knocking out this gene did not affect the pathogenicity of the Z7 strain. These results provide new insights into the function and evolution of CDC genes in Alternaria.


Microbiological Research | 2017

Functional characterization of the Dsc E3 ligase complex in the citrus postharvest pathogen Penicillium digitatum

Ruoxin Ruan; Kuang-Ren Chung; Hongye Li

Sterol regulatory element binding proteins (SREBPs) are required for sterol homeostasis in eukaryotes. Activation of SREBPs is regulated by the Dsc E3 ligase complex in Schizosaccharomyces pombe and Aspergillus spp. Previous studies indicated that an SREBP-coding gene PdsreA is required for fungicide resistance and ergosterol biosynthesis in the citrus postharvest pathogen Penicillium digitatum. In this study, five genes, designated PddscA, PddscB, PddscC, PddscD, and PddscE encoding the Dsc E3 ligase complex were characterized to be required for fungicide resistance, ergosterol biosynthesis and CoCl2 tolerance in P. digitatum. Each of the dsc genes was inactivated by target gene disruption and the resulted phenotypes were analyzed and compared. Genetic analysis reveals that, of five Dsc complex components, PddscB is the core subunit gene in P. digitatum. Although the resultant dsc mutants were able to infect citrus fruit and induce maceration lesions as the wild-type, the mutants rarely produced aerial mycelia on affected citrus fruit peels. P. digitatum Dsc proteins regulated not only the expression of genes involved in ergosterol biosynthesis but also that of PdsreA. Yeast two-hybrid assays revealed a direct interaction between the PdSreA protein and the Dsc proteins. Ectopic expression of the PdSreA N-terminus restored fungicide resistance in the dsc mutants. Our results provide important evidence to understand the mechanisms underlying SREBP activation and regulation of ergosterol biosynthesis in plant pathogenic fungi.

Collaboration


Dive into the Ruoxin Ruan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuang-Ren Chung

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Dongliang Yu

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge